

Sgr A*の過去の活動を起源 とする銀河系中心からの ガンマ線放射

Yutaka Fujita (Osaka) Shigeo S. Kimura (Tohoku) Kohta Murase (Penn State)

Physical Review D 92, 023001 (2015)

Contents

Particle acceleration in Low-Iuminosity active galactic nuclei (LLAGNs)

- Radiatively inefficient accretion flows (RIAFs)
- Sagittarius A* (Sgr A*) and Central Molecular Zone (CMZ)
- Diffusion of cosmic ray (CR) protons in the CMZ
- Gamma rays from the CMZ
- Summary

CR acceleration in RIAF

 Particles are stochastically accelerated by turbulence in RIAF

– pγ and pp-interactions in the RIAFs may be responsible for production of the neutrinos detected by IceCube (Kimura, Murase, & Toma 2015; A16a 講演)

BH

р

p

D

р

CR protons in CMZ

 Some of the protons accelerated in the RIAF should plunge into CMZ

 They produce γ-rays through ppinteractions

p+p

CMZ

 We calculate the diffusion of CR protons in the CMZ and the γ-ray emission

p+p

<mark>0+0</mark>

V

CMZ

γ-rays from the CMZ

HESS observation of the Galactic center

– CMZ radiates γ-rays

Color: γ-ray Contour: molecular gas (Aharonian+ 06)

Model

We solve diffusion equation

Spherically symmetric

• We ignore the region perpendicular to the disc

$$\frac{\partial f}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \kappa \frac{\partial f}{\partial r} \right) + Q$$
Usion coefficient (κ)
Evolution Galactic value (Gabicit 09)

$$\kappa = 10^{28} \left(\frac{E_p}{10 \text{ GeV}}\right)^{0.5} \left(\frac{B}{3 \,\mu\text{G}}\right)^{-0.5} \text{ cm}^2 \text{s}^{-1} ,$$

- $B \sim mG$ in CMZ
- Source (Q)

Diff

- CRs accelerated in Sgr A* (Kimura+ 13)
- Only a tiny fraction of CRs plunge into the CMZ

 $\lambda \sim 10^{-3}$

Spectrum of CRs

The typical energy of CRs accelerated in a RIAF is determined by the condition of $t_{\rm acc} = t_{\rm diff, RIAF}$ $= \frac{E_{p,eq}}{m_p c^2} \sim 1.4 \times 10^5 \left(\frac{\dot{m}}{0.01}\right)^{1/2} \left(\frac{M_{\rm BH}}{1 \times 10^7 \, M_{\odot}}\right)^{1/2}$ $\left(\frac{\alpha}{0.1}\right)^{1/2} \left(\frac{\zeta}{0.1}\right)^3 \left(\frac{\beta}{3}\right)^{-2} \left(\frac{R_{\rm acc}}{10 R_{\rm S}}\right)^{-7/4}$ **Functional form** - 2nd Fermi acceleration (Becker+ 06) $\dot{N}(x)dx \propto x^{(7-3q)/2} K_{(b-1)/2}(x)dx$ K_{v} : Bessel func. Normalization $\propto \dot{M}c^2$

Results Current accretion rate on Sgr A* is very small $m = M/M_{Edd} = 4.2 \times 10^{-6}$ • If \dot{m} is constant, γ -ray luminosity is much smaller than the Fermi and HESS observations *E² dN/dE* (GeV cm⁻² s⁻¹) 0 ... Fermi 10⁻⁸ **HESS** Spectrum Red: γ-ray Blue: neutrino 10⁶ 10^{2} 10⁰ 10^{8} 10^{4}

E (GeV)

Past activity of Sgr A*

 Observations have indicated that Sgr A* was much more active in the past
 – Koyama+96, Murakami+00, Totani+06, Ryu+13

m ~ 0.001 (≥ 100 yrs ago)
TeV γ-ray observations can be explained
GeV emission has another origin

Uncertainty

Since our model is rather simple, there are uncertainties in parameters

 Increase the typical energy of protons assuming more efficient acceleration

– CTA can discriminate

the models

History of CR Acceleration

 In our model, γ-rays from the outer CMZ are radiated by older CRs

It takes a longer time for the CRs to diffuse

Spectral variance of y-ray spectrum may reflect the history of CR

acceleration in Sgr A*

Change of typical
 energy of CRs

Other galaxies

Centaurus A

- Nearby radio galaxy (3.84 Mpc)
- TeV γ-ray emission can be explained if the AGN is well covered by molecular gas

10⁸

Summary

 LLAGNs may accelerate CRs and may be the source of neutrinos detected by IceCube

- If so, Sgr A* should produce a lot of CR protons
- Some of them should enter the CMZ and generate γ-rays

We solved diffusion equation of the CRs and calculated γ-ray spectra

 The results are consistent with TeV γ-ray observations if Sgr A* was active in the past