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CTA transient factory	


H.E.S.S. telescope system [9–11], over a dozen new sources were
detected [12].

For CTA, an improved Galactic plane survey should be a major
objective and it will also be capable of performing an all-sky survey
in unprecedentedly short time at high sensitivity; the scientific
rationale and feasibility of both survey types are thoroughly dis-
cussed in [13]. As also discussed in [13], such surveys can be per-
formed in various modes of observation, in particular, large
number of high-performance IACTs allows for using non-parallel
modes with an enlarged FOV. The proper adaptation of such a
mode for a specific telescope array can be a non-trivial task. The
optimization of the pointing strategy, taking into account numer-
ous characteristics of an array, e.g. distance between telescopes,
FOV, energy threshold etc, can significantly reduce the observation
time needed to achieve a given sensitivity.

In this work we consider the array of Middle Sized Telescopes
(MST) working in various, parallel and non-parallel, modes. By per-
forming high-statistics Monte Carlo (MC) simulations of the sky-
survey observations, we derive for each mode the basic perfor-
mance parameters at both trigger and analysis levels, which then
allow us to compare efficiencies of the modes. Our study is a part
of an intensive work within the CTA Monte Carlo Work Package
aimed at optimizing the CTA observation scheme. Whereas we
consider in detail different modes with the MST array, independent
investigations are currently performed for the divergent mode of
Large Sized Telescopes (LST) sub-array and the full CTA array work-
ing in divergent modes.

2. Sky survey modes

Fig. 1 illustrates possible modes for a large telescope array used
for sky surveys. The parallel and divergent configurations were
considered before in [13]; below we introduce also a novel, conver-
gent mode (note the difference between our terminology and that
of [13], were the parallel mode is referred to as convergent).

The performance of a telescope system operating in the sky sur-
vey mode depends on the FOV of the system and the time of obser-
vation needed to achieve a given significance level, i.e. its
sensitivity.

In the simplest approach, sky surveys may be performed with
telescopes pointed parallely into the same direction of the sky
(Fig. 1a), however, in such a case the FOV of the telescope system
is highly limited by the FOVs of individual telescopes. The FOV of
a telescope array can be significantly enlarged by slightly deviating
the pointing direction of each telescope. In the divergent mode,
telescopes are inclined into the outward direction, see Fig. 1b, by
an angle increasing with the telescope distance from the array cen-
ter. As explained below, a performance improvement for such a
configuration can be expected primarily at high energies of pri-
mary photons.

For the divergent configuration, images of gamma rays imping-
ing close the array center are shifted toward the camera edge,
which leads to a leakage1 or complete loss of an event. While the
larger loss of events is mostly pronounced for the lower-energy
gamma rays, the leakage effect concerns mainly events with higher
energies. As a result even if an event is registered it is poorly recon-
structed. On the other hand, orientation of telescopes in the diver-
gent mode is suitable for efficient detection of events with large
impact parameter and/or arriving from directions further from the
FOV center (in both cases mainly with high energies).

Qualitatively, one can expect that those negative effects can be
reduced for the opposite orientation, i.e. with outer telescopes
inclined toward the array center, see Fig. 1c. A quantitative com-

parison of the performance of the three modes and a related issue,
i.e. an optimal value of the offset angle (giving the amount of the
difference of the pointing directions, as defined below), appears
crucial for planning the most efficient survey strategy.

3. MC simulations

For all three modes, we simulate the response of the telescope
array to the Extensive Air Showers (EAS) induced by gamma rays
and proton background. To simulate the development of EAS we
use CORSIKA 6.99 code [14,15], used as a standard in CTA. We sim-
ulated 2:1! 107 gamma rays and 3:8! 108 proton events2 – both
with energies between 30 GeV and 10 TeV generated from differen-
tial spectra with the spectral index C ¼ #2:0. However, in our anal-
ysis, we use event weights corresponding to spectra with C ¼ #2:57
for gamma rays and C ¼ #2:73 for protons. Gamma rays are simu-
lated from a point-like test source with the direction defined by
the Zenith angle Za = 20$ and the Azimuth Az = 180$ measured with
respect to the magnetic North. The background proton showers are
simulated isotropically with directions within a 10$ half-angle cone
(larger than the FOV of all considered modes) centered on the direc-
tion of the gamma-ray source. We set the maximum impact param-
eter for gamma rays to 1000 m and for protons to 1500 m. The
detector array is assumed to be located at the Namibian (H.E.S.S.)
site at the altitude of 1800 m a.s.l.

The response of the telescope array is simulated with the CTA
sim_telarray code [15,16]. We use the MST subarray of the CTA
array E from the so-called production-1; the subarray includes 23
telescopes with positions shown in Fig. 2. The direction of the cen-
tral telescope No. 5 is always approximately in the center of the
FOV of the array (a slight displacement may occur due to the pres-
ence of telescopes No. 12 and 15, which break the symmetry);
then, this direction is used to define various configurations and

Fig. 1. Three modes of configuration of the telescope system used in the sky-survey
scans: (a) normal (parallel) mode; (b) divergent mode; (c) convergent mode.

1 The effect of cutting off an image at the camera edge. 2 including the number of re-used showers.

34 M. Szanecki et al. / Astroparticle Physics 67 (2015) 33–46
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H.E.S.S. telescope system [9–11], over a dozen new sources were
detected [12].

For CTA, an improved Galactic plane survey should be a major
objective and it will also be capable of performing an all-sky survey
in unprecedentedly short time at high sensitivity; the scientific
rationale and feasibility of both survey types are thoroughly dis-
cussed in [13]. As also discussed in [13], such surveys can be per-
formed in various modes of observation, in particular, large
number of high-performance IACTs allows for using non-parallel
modes with an enlarged FOV. The proper adaptation of such a
mode for a specific telescope array can be a non-trivial task. The
optimization of the pointing strategy, taking into account numer-
ous characteristics of an array, e.g. distance between telescopes,
FOV, energy threshold etc, can significantly reduce the observation
time needed to achieve a given sensitivity.

In this work we consider the array of Middle Sized Telescopes
(MST) working in various, parallel and non-parallel, modes. By per-
forming high-statistics Monte Carlo (MC) simulations of the sky-
survey observations, we derive for each mode the basic perfor-
mance parameters at both trigger and analysis levels, which then
allow us to compare efficiencies of the modes. Our study is a part
of an intensive work within the CTA Monte Carlo Work Package
aimed at optimizing the CTA observation scheme. Whereas we
consider in detail different modes with the MST array, independent
investigations are currently performed for the divergent mode of
Large Sized Telescopes (LST) sub-array and the full CTA array work-
ing in divergent modes.

2. Sky survey modes

Fig. 1 illustrates possible modes for a large telescope array used
for sky surveys. The parallel and divergent configurations were
considered before in [13]; below we introduce also a novel, conver-
gent mode (note the difference between our terminology and that
of [13], were the parallel mode is referred to as convergent).

The performance of a telescope system operating in the sky sur-
vey mode depends on the FOV of the system and the time of obser-
vation needed to achieve a given significance level, i.e. its
sensitivity.

In the simplest approach, sky surveys may be performed with
telescopes pointed parallely into the same direction of the sky
(Fig. 1a), however, in such a case the FOV of the telescope system
is highly limited by the FOVs of individual telescopes. The FOV of
a telescope array can be significantly enlarged by slightly deviating
the pointing direction of each telescope. In the divergent mode,
telescopes are inclined into the outward direction, see Fig. 1b, by
an angle increasing with the telescope distance from the array cen-
ter. As explained below, a performance improvement for such a
configuration can be expected primarily at high energies of pri-
mary photons.

For the divergent configuration, images of gamma rays imping-
ing close the array center are shifted toward the camera edge,
which leads to a leakage1 or complete loss of an event. While the
larger loss of events is mostly pronounced for the lower-energy
gamma rays, the leakage effect concerns mainly events with higher
energies. As a result even if an event is registered it is poorly recon-
structed. On the other hand, orientation of telescopes in the diver-
gent mode is suitable for efficient detection of events with large
impact parameter and/or arriving from directions further from the
FOV center (in both cases mainly with high energies).

Qualitatively, one can expect that those negative effects can be
reduced for the opposite orientation, i.e. with outer telescopes
inclined toward the array center, see Fig. 1c. A quantitative com-

parison of the performance of the three modes and a related issue,
i.e. an optimal value of the offset angle (giving the amount of the
difference of the pointing directions, as defined below), appears
crucial for planning the most efficient survey strategy.

3. MC simulations

For all three modes, we simulate the response of the telescope
array to the Extensive Air Showers (EAS) induced by gamma rays
and proton background. To simulate the development of EAS we
use CORSIKA 6.99 code [14,15], used as a standard in CTA. We sim-
ulated 2:1! 107 gamma rays and 3:8! 108 proton events2 – both
with energies between 30 GeV and 10 TeV generated from differen-
tial spectra with the spectral index C ¼ #2:0. However, in our anal-
ysis, we use event weights corresponding to spectra with C ¼ #2:57
for gamma rays and C ¼ #2:73 for protons. Gamma rays are simu-
lated from a point-like test source with the direction defined by
the Zenith angle Za = 20$ and the Azimuth Az = 180$ measured with
respect to the magnetic North. The background proton showers are
simulated isotropically with directions within a 10$ half-angle cone
(larger than the FOV of all considered modes) centered on the direc-
tion of the gamma-ray source. We set the maximum impact param-
eter for gamma rays to 1000 m and for protons to 1500 m. The
detector array is assumed to be located at the Namibian (H.E.S.S.)
site at the altitude of 1800 m a.s.l.

The response of the telescope array is simulated with the CTA
sim_telarray code [15,16]. We use the MST subarray of the CTA
array E from the so-called production-1; the subarray includes 23
telescopes with positions shown in Fig. 2. The direction of the cen-
tral telescope No. 5 is always approximately in the center of the
FOV of the array (a slight displacement may occur due to the pres-
ence of telescopes No. 12 and 15, which break the symmetry);
then, this direction is used to define various configurations and

Fig. 1. Three modes of configuration of the telescope system used in the sky-survey
scans: (a) normal (parallel) mode; (b) divergent mode; (c) convergent mode.

1 The effect of cutting off an image at the camera edge. 2 including the number of re-used showers.
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assume average prompt emission:	


luminosity L~1052 erg/s	


duration T~30 s, spectra Γ=-2.2	


simplified z-dependent EBL cutoff	



probably detectable out to z~3	
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fast radio bursts	

 Thornton+ Science 13	



signal-to-noise ratios (SNRs) to yield astrophysi-
cally interesting constraints for either parameter
and show no evidence of scattering.

Our FRBs were detected with DMs in the
range from553 to 1103 cm−3 pc. Their highGalactic
latitudes (jbj > 41○, Table 1) correspond to lines
of sight through the low column density Galactic
ISM corresponding to just 3 to 6% of the DM
measured (10). These small Galactic DM con-
tributions are highly supportive of an extragalac-
tic origin and are substantially smaller fractions
than those of previously reported bursts, which
were 15% of DM= 375 cm−3 pc for FRB 010724
(4) and 70% of DM = 746 cm−3 pc for FRB
010621 (5).

The non-Galactic DM contribution, DME, is
the sum of two components: the intergalactic
medium (IGM; DMIGM) and a possible host gal-
axy (DMHost). The intervening medium could be
purely intergalactic and could also include a con-
tribution from an intervening galaxy. Two op-
tions are considered according to the proximity
of the source to the center of a host galaxy.

If located at the center of a galaxy, this may be
a highly dispersive region; for example, lines
of sight passing through the central regions of
Milky Way–like galaxies could lead to DMs in
excess of 700 cm−3 pc in the central ~100 pc (11),
independent of the line-of-sight inclination. In
this case, DME is dominated by DMHost and re-
quires FRBs to be emitted by an unknownmecha-
nism in the central region, possibly associated
with the supermassive black hole located there.

If outside a central region, then elliptical host
galaxies (which are expected to have a low electron
density) will not contribute to DME substantially,
and DMHost for a spiral galaxy will only contrib-
ute substantially to DME if viewed close to edge-
on [inclination, i > 87○ for DM > 700cm−3pc;
probabilityði > 87○Þ ≈ 0:05]. The chance of all
four FRBs coming from edge-on spiral galaxies
is therefore negligible (10−6). Consequently, if the
sources are not located in a galactic center, DMHost

would likely be small, and DMIGM dominates.
Assuming an IGM free-electron distribution, which
takes into account cosmological redshift and as-
sumes a universal ionization fraction of 1 (12, 13),
the sources are inferred to be at redshifts z = 0.45
to 0.96, corresponding to comoving distances of
1.7 to 3.2 Gpc (Table 1).

In principle, pulse scatter-broadening mea-
surements can constrain the location and strength
of an intervening scattering screen (14). FRBs
110627, 110703, and 120127 are too weak to
enable the determination of any scattering; how-
ever, FRB 110220 exhibits an exponential scat-
tering tail (Fig. 1). There are at least two possible
sources and locations for the responsible scatter-
ing screens: a host galaxy or the IGM. It is pos-
sible that both contribute to varying degrees.

For screen-source, Dsrc, and screen-observer,
Dobs, distances, themagnitude of the pulse broad-
ening resulting from scattering is multiplied by
the factor DsrcDobs=ðDsrc + DobsÞ2. For a screen
and source located in a distant galaxy, this effect

probably requires the source to be in a high-
scattering region, for example, a galactic center.

The second possibility is scattering because
of turbulence in the ionized IGM, unassociated
with any galaxy. There is a weakly constrained
empirical relationship betweenDM andmeasured
scattering for pulsars in the MW. If applicable to
the IGM, then the observed scattering implies
DMIGM > 100cm−3 pc (2, 15). With use of the
aforementioned model of the ionized IGM, this
DM equates to z > 0:11 (2, 12, 13). The prob-
ability of an intervening galaxy located along the
line of sight within z ≈ 1 is ≤0.05 (16). Such a
galaxy could be a source of scattering and dis-
persion, but the magnitude would be subject to
the same inclination dependence as described for
a source located in the disk of a spiral galaxy.

It is important to be sure that FRBs are not a
terrestrial source of interference. Observations at
Parkes have previously shown swept frequency
pulses of terrestrial origin, dubbed “perytons.”
These are symmetric W > 20 ms pulses, which
imperfectly mimic a dispersive sweep (2, 8). Al-
though perytons peak in apparent DM near
375 cm−3 pc (range from ~200 to 420 cm–3 pc),

close to that of FRB 010724, the FRBs presented
here have much higher and randomly distributed
DMs. Three of these FRBs are factors of >3
narrower than any documented peryton. Last, the
characteristic scattering shape and strong disper-
sion delay adherence of FRB 110220 make a
case for cold plasma propagation.

The Sun is known to emit frequency-swept
radio bursts at 1 to 3GHz [typeIIIdm (17)]. These
bursts have typical widths of 0.2 to 10 s and
positive frequency sweeps, entirely inconsistent
with measurements of W and a for the FRBs.
Whereas FRB 110220 was separated from the
Sun by 5.6°, FRB 110703 was detected at night
and the others so far from the Sun that any
solar radiation should have appeared in multi-
ple beams. These FRBs were only detected in a
single beam; it is therefore unlikely they are of
solar origin.

Uncertainty in the true position of the FRBs
within the frequency-dependent gain pattern of
the telescope makes inferring a spectral index, and
hence flux densities outside the observing band,
difficult. A likely off-axis position changes the in-
trinsic spectral index substantially. The spectral

Fig. 1. The frequency-integrated flux densities for the four FRBs. The time resolutions match the
level of dispersive smearing in the central frequency channel (0.8, 0.6, 0.9, and 0.5 ms, respectively).
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energy distribution across the band in FRB 110220
is characterized by bright bands ~100 MHz wide
(Fig. 2); the SNRs are too low in the other three
FRBs to quantify this behavior (2). Similar spec-
tral characteristics are commonly observed in the
emission of high-|b| pulsars.

With four FRBs, it is possible to calculate an
approximate event rate. The high-latitude HTRU
survey region is 24% complete, resulting in 4500
square degrees observed for 270 s. This cor-
responds to an FRB rate ofRFRBðF e 3 Jy msÞ ¼
1:0þ0:6

−0:5 % 104sky−1day−1, where the 1-s uncer-
tainty assumes Poissonian statistics. The MW
foreground would reduce this rate, with increased
sky temperature, scattering, and dispersion for
surveys close to the Galactic plane. In the ab-
sence of these conditions, our rate implies that
17þ9

−7 , 7
þ4
−3 , and 12þ6

−5 FRBs should be found in
the completed high- and medium-latitude parts
of the HTRU (1) and Parkes multibeam pulsar
(PMPS) surveys (18).

One candidate FRB with DM > DMMW has
been detected in the PMPS [ jbj < 5○ (5, 19)].
This burst could be explained by neutron star
emission, given a small scale-height error;
however, observations have not detected any
repetition. No excess-DM FRBs were detected in
a burst search of the first 23% of the medium-
latitude HTRU survey [jbj < 15○ (20)].

The event rate originally suggested for
FRB 010724, R010724 ¼ 225 sky−1 day−1 (4), is
consistent with our event rate given a Euclid-
ean universe and a population with distance-
independent intrinsic luminosities (source
count, NºF−3=2) yielding RFRB ðF e 3 Jy msÞ
e 102RFRBðF010724 e 150 Jy msÞ.

There are no known transients detected at
gamma-ray, x-ray, or optical wavelengths or
gravitational wave triggers that can be temporally
associated with any FRBs. In particular there is

Fig. 2. A dynamic spectrum showing the frequency-
dependent delay of FRB 110220. Time is measured relative
to the time of arrival in the highest frequency channel. For clarity
we have integrated 30 time samples, corresponding to the dis-
persion smearing in the lowest frequency channel. (Inset) The
top, middle, and bottom 25-MHz-wide dedispersed subband used
in the pulse-fitting analysis (2); the peaks of the pulses are
aligned to time = 0. The data are shown as solid gray lines and
the best-fit profiles by dashed black lines.

Table 1. Parameters for the four FRBs. The position given is the center of the gain pattern of the beam
in which the FRB was detected (half-power beam width ~ 14 arc min). The UTC corresponds to the arrival
time at 1581.804688MHz. The DM uncertainties depend not only on SNR but also on whether a and b are
assumed (a ¼ −2; no scattering) or fit for; where fitted, a and b are given. The comoving distance was
calculated by using DMHost = 100 cm−3 pc (in the rest frame of the host) and a standard, flat-universe
LCDM cosmology, which describes the expansion of the universe with baryonic and dark matter and dark
energy [H0 = 71 km s−1Mpc−1,WM=0.27,WL =0.73;H0 is the Hubble constant andWM andWL are fractions
of the critical density of matter and dark energy, respectively (29)]. a and b are from a series of fits using
intrinsic pulse widths of 0.87 to 3.5ms; the uncertainties reflect the spread of values obtained (2). The observed
widths are shown; FRBs 110627, 110703, and 120127 are limited by the temporal resolution due to dis-
persion smearing. The energy released is calculated for the observing band in the rest frame of the source (2).

FRB 110220 FRB 110627 FRB 110703 FRB 120127

Beam right
ascension ( J2000)

22h 34m 21h 03m 23h 30m 23h 15m

Beam declination
( J2000)

−12° 24′ −44° 44′ −02° 52′ −18° 25′

Galactic latitude,
b (°)

−54.7 −41.7 −59.0 −66.2

Galactic longitude,
l (°)

+50.8 +355.8 +81.0 +49.2

UTC (dd/mm/yyyy
hh:mm:ss.sss)

20/02/2011
01:55:48.957

27/06/2011
21:33:17.474

03/07/2011
18:59:40.591

27/01/2012
08:11:21.723

DM (cm−3 pc) 944.38 T 0.05 723.0 T 0.3 1103.6 T 0.7 553.3 T 0.3
DME (cm

−3 pc) 910 677 1072 521
Redshift, z (DMHost =

100 cm−3 pc)
0.81 0.61 0.96 0.45

Co-moving distance,
D (Gpc) at z

2.8 2.2 3.2 1.7

Dispersion index, a −2.003 T 0.006 – −2.000 T 0.006 –
Scattering index, b −4.0 T 0.4 – – –
Observed width

at 1.3 GHz, W (ms)
5.6 T 0.1 <1.4 <4.3 <1.1

SNR 49 11 16 11
Minimum peak

flux density Sn(Jy)
1.3 0.4 0.5 0.5

Fluence at 1.3 GHz,
F (Jy ms)

8.0 0.7 1.8 0.6

SnD2 (× 1012 Jy kpc2) 10.2 1.9 5.1 1.4
Energy released, E (J) ~1039 ~1037 ~1038 ~1037
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Sν~0.4-1.3 Jy @1.28-1.52 GHz	


Δt~<5 ms	



DM~550-1100 pc cm-3	



-> D~1.7-3.2 Gpc (z~0.45-0.96)	


-> E~1037-1039 erg	



RFRB~104 day-1~0.1RSN,10RGRB! �

see also Kulkarni+	


arXiv:1402.4766	

Parkes High Time Resolution Universe survey	





summary	


-  点源サーベイの効率向上の可能性	


��銀河系外サーベイのモードとして検討中	


- GRB：外部トリガーなしに発生時から捕捉可能	


  long+short GRB即時放射の物理	


��ローレンツ不変性破れの探査…	



divergent pointing observations	



- 無バイアス突発天体サーベイ: 大きなdiscovery potential	


  fast radio burstsのVHE対応天体	


  -> SKA aperture arrayと同時観測	


  未知との遭遇：fast VHE bursts？？	



- ~1000 deg2に迫る広視野が望ましい	


  より詳細な検出可能性	



- widest FoV favorable, as long as tolerable for the survey	


transient factory (SKA+precursors, ZTF, LSST…)に	


CTAも仲間入り？	



