Fast Radio Burst and Non-thermal Afterglow from Binary Neutron Star Mergers

戸谷友則 (TOTANI, Tomonori) Dept. Astronomy, Univ. Tokyo

Outline

• Three recent papers by my students:

- repeating and non-repeating FRBs from binary neutron star mergers
 - Yamasaki, TT, & Kiuchi '18, PASJ, 70, 39
- A new, more natural modeling of electron energy distribution for the nonthermal afterglow of GW 170817
 - Lin, TT, & Kiuchi '18, arXiv:1810.02587
- IceCube neutrinos from cosmic-rays in star-forming galaxies: a latest
 calculation by cosmological galaxy formation model
 - Sudoh, TT, & Kawanaka '18, PASJ, 70, 49

repeating and non-repeating FRBs from binary neutron star mergers

• <u>Shotaro Yamasaki</u>, TT, & Kiuchi '18, PASJ, 70, 39

Fast Radio Bursts: A New Transient Population at Cosmological Distances

- intrinsic pulse width <~ 1 msec (observed width broadened by scattering)
- + event rate ~ 10^{3-4} /sky /day
- + large dispersion measure implies z ~ 1

What's the origin of FRBs?

- + FRB 121102 is a repeater!
 - most likely a young neutron star
 - + only one FRB detected by Arecibo (the faintest flux)
 - + dwarf, star-forming host galaxy identified at z = 0.19
 - * strong persistent radio flux detected (180 uJy, size < 0.7 pc)
 - only one case of confirmed repeating FRB: a different population from others?
- some FRBs show low rotation measure (e.g., FRB 150807, Ravi+'16)
 - highly magnetized environment like young supernova remnants or dense star forming regions not favored
 - * clean environment such as neutron-star merger?
- FRB 171020 does not have any persistent radio counterpart similar to FRB 121102 (Mahony+'18)

(non-repeating) FRBs from NS-NS mergers TT 2013, PASJ, 65, L12

- + FRB rate vs. NS-NS merger rate
 - + FRB rate 10^{3} - 10^{4} /day/sky at z~1 is roughly 10^{3} - 10^{4} /Gpc³/yr at z=0
 - + c.f. short GRBs $\sim 1-10 / \text{Gpc}^3 / \text{yr}$
 - + high end of NS-NS merger rate estimate before GW 170817
 - + now NS-NS rate 1540⁺³²⁰⁰-1220 /Gpc³/yr (LVC '17 PRL 119, 161101)
- + predicted radio flux by dipole radiation is similar to FRBs, if
 - + dipole with B ~ 10^{12} G and r ~ 10 km
 - rotation period ~ msec
 - + radio conversion efficiency similar to pulsars (~10⁻⁴)

$$\dot{E} = -6.2 \times 10^{45} \left(\frac{B}{10^{12.5} \text{ G}}\right)^2 \left(\frac{R}{10 \text{ km}}\right)^6$$
$$\times \left(\frac{P}{0.5 \text{ ms}}\right)^{-4} \text{ erg s}^{-1}.$$

$$F_{\nu} = \frac{1}{\nu_{\rm obs}} \frac{\epsilon_{\rm r} |\dot{E}|}{4\pi D_{\rm lum}^2} = 0.02 \left(\frac{\epsilon_{\rm r}}{10^{-4}}\right) \left(\frac{D_{\rm lum}}{4.6 \,{\rm Gpc}}\right)^{-2} \\ \times \left(\frac{B}{10^{12.5} \,{\rm G}}\right)^2 \left(\frac{R}{10 \,{\rm km}}\right)^6 \left(\frac{P}{0.5 \,{\rm ms}}\right)^{-4} \,{\rm Jy}\,.$$

NS-NS merger ejecta vs. radio emission

- + 10⁻³~10⁻² Mo ejecta expected from merger
- no radio emission if they are absorbed by thick ejecta?

NS-NS merger simulation by K. Kiuchi

ejecta profile in merger simulation

- ejecta appears at r > 30 km only ~ 1 msec after the spin of merged star becomes maximum
- * There is a time window (1-2 msec) to produce a FRB before hidden by ejecta
- + ejecta formation gives a possible explanation for no repeating bursts for many FRBs

Yamasaki, TT, & Kiuchi '17

repeating FRB from NS-NS mergers

Yamasaki, TT, & Kiuchi '17

- a long-lived massive NS may be left after a fraction of NS-NS mergers, depending on EOS
- + event rate of NS-NS mergers much (~100x) higher than SLSN rate (40 /Gpc³/yr)
- + merger ejecta becomes transparent in 1-10 yrs to radio signals
 - + c.f. ~10-100 yrs for supernova scenario
- repeating burst rate of FRB 121102 broadly consistent with NS-NS merger rate if the repeater life time is ~10 yrs
- persistent radio emission from pulsar wind nebular interacting with merger ejecta

* prediction:

- ejecta much faster than supernova —> source size evolution may be seen for FRB 121102 in the future
- repeating FRBs also from elliptical/passive galaxies
- a repeating FRB appears ~10 yrs following a fraction of NS-NS mergers detected by GW

• A new, more natural modeling of electron energy distribution for the non-thermal afterglow of GW 170817

• <u>Haoxiang Lin</u>, TT, & Kiuchi '18, arXiv:1810.02587

- synchrotron emission from accelerated electrons in (mildly) relativistic shock, like GRB afterglow
- radially stratified spherical shell or off-axis and angularly extended jet
- best-fit by previous studies is single-power-law from radio to X-rays in all time
- means all observed frequencies above v_m (corresponding to the minimum electron energy)

synchrotron tail?

- observed data of GW170817 do not show clear evidence of the synchrotron tail $(\nu < \nu_m)$

previous models, and our work

- previous studies all assumed that all electrons in the shock are accelerated as nonthermal particles!
 - following standard GRB afterglow modelings (e.g. Sari+'98)
 - energy fraction of accelerated electrons is controlled by the minimum energy of the electron energy distribution
 - simple, but obviously unphysical (c.f. supernova remnants)
- This work:

•

- add a new, but natural model parameter, so that nonthermal electron energy fraction is variable
 - total number of nonthermal electrons: corresponds to the acceleration efficiency
 - the minimum electron energy: corresponds to the electron-ion equipartition

MCMC fits

with two standard geometrical models:

.

- radially stratified spherical outflow
- off-axis, angularly extended jet

New solution in synchrotron tail!

Best-fit model (Jet)

Main Results

- a more natural electron energy distribution leads to the synchrotron tail in early radio bands!
 - confirming only a small fraction is accelerated to nonthermal
 - close to electron-ion equipartition
- low-frequency early radio observations highly encouraged in future events
 - would give important information for:
 - particle acceleration efficiency
 - electron-ion equipartition
- jet energy ~ 10⁵² erg (isotropic-equivalent to the jet direction), about 10 times larger than the conventional modeling
 - still consistent with the distribution of the short GRB energy distribution
- ambient matter density n ~ 10⁻³-10⁻² cm⁻³, about 10 times larger than the conventional modeling
 - consistent with the hot gas density in typical giant elliptical galaxies

- IceCube neutrinos from cosmic-rays in star-forming galaxies: a latest calculation by cosmological galaxy formation model
 - <u>Takahiro Sudoh</u>, TT, & Kawanaka '18, PASJ, 70, 49

Main Points of This Work

- Neutrinos produced by cosmic-ray interaction in star-forming galaxies should have some contribution to IceCube neutrinos, but its fraction is controversial
- We present a new model of gamma-ray and neutrino emission from a star-forming galaxy, from the quantities of (1) stellar mass, (2) gas mass, (3) star formation rate, and (4) disk radius.
- This model nicely reproduces gamma-ray luminosities of nearby galaxies detected by Fermi, from dwarfs to starbursts.
 - \rightarrow good calibration for the prediction of neutrino flux
- This model is combined with a semi-analytical galaxy formation model in Lambda-CDM cosmology to predict neutrino background from star-forming galaxies
- It is extremely difficult to explain the IceCube neutrinos by star-forming galaxies in the standard picture of galaxy formation.

modeling gamma-ray and neutrino emission

- CR production rate: \propto SFR
- CR energy spectrum: power-law with index Γ
- target ISM gas density: from M_{gas} , R_{eff} , and disk scale height $H \propto R_{eff}$
- velocity scale in the disk: virial equilibrium along the disk height
 - G (M_{gas} + M_{star}) / $R_{eff}^2 \sim \sigma^2$ / H
- CR diffusion and escape
 - energy-dependent diffusion coefficient:
 - $R_L < l_0 \rightarrow$ Kolomogorov turbulence
 - $R_L > l_0 \rightarrow$ small angle scattering
 - $R_L > (H l_0)^{1/2} \rightarrow \text{free streaming}$
 - l_0 : coherent length of turbulence, assumed to be 10 pc from observations
- magnetic field

•

- equilibrium with the energy density injected by star formation within the dynamical time scale H/o
- → you can calculate luminosity and spectrum of gamma-ray and neutrinos via pion production in ISM

$$D(E_p) = \begin{cases} \frac{cl_0}{3} \left[\left(\frac{R_L}{l_0}\right)^{\frac{1}{3}} + \left(\frac{R_L}{l_0}\right)^2 \right] & \left(R_L \le \sqrt{Hl_0}\right) \\ \frac{cH}{3} & \left(R_L > \sqrt{Hl_0}\right) \end{cases}$$

Calibration by gamma-rays from Nearby galaxies

Table 1.	Output f properties of gamma-ray galaxies					
Objects	$L_{\gamma}^{(a)}$	SFR	$M_{\rm gas}^{\rm (c)}$	$M_*^{(d)}$	$R_{\mathrm{eff}}^{(\mathrm{e})}$	
	10 ³⁹ erg/s	$M_{\odot}/{ m yr}$	$10^9 M_{\odot}$	$10^9 M_{\odot}$	kpc	
MW	0.82 ± 0.24	2.6	4.9	50	6.0	
LMC	$0.047 {\pm} 0.005$	0.24	0.53	1.5	2.2	
SMC	$0.011 {\pm} 0.003$	0.037	0.45	0.46	0.7	Input
NGC253	6 ± 2	7.9	4.3	21	3.7	
M82	15±3	16.3	1.3	-	1.2	
NGC2146	40±21	17.5	4.1	20	1.8	

6 nearby galaxies with good measurements of gamma-ray luminosity from CR interactions

- including various types (dwarfs to starbursts)
- good measurements of galaxy properties: star formation rate (SFR), gas mass (M_{gas}), stellar mass (M_{star}), disk effective radius (R_{eff})
- Can we make a physical model to predict gamma-ray luminosity from galaxy properties for these galaxies?

our model reproduces gamma-ray luminosities fairly well!
better than the simple L_{gamma} ∝ SFR or L_{gamma} ∝ SFR x M_{gas}

cosmological galaxy formation model

 $\log[\phi/h^3Mpc^{-3}mag^{-1}]$

- use a semi-analytic model of hierarchical galaxy formation in the CDM framework
- Nagashima & Yoshii '04
- gives necessary inputs (SFR, M_{star}, M_{gas}, size)
- reproduces local galaxy statistics (luminosity function, luminositysize relation, etc.)
- tested against various high-z galaxy data set (e.g. Ly-break galaxies)
- major mergers produce starburst galaxies

neutrino background

