An Off-Axis Jet in Electromagnetic **Counterparts to** GW170817?

Kunihito IOKA (Center for Gravitational Physics, YITP, Kyoto U)

Multi-Messenger Era

21th Century: Multi-Messenger Era

GW170817 $I^{st} GW from NS^2 \qquad NS^2 = Short GRB?$

~100 sec chirp \Rightarrow NS-NS

R-process elements

Equation of state

Relativity, Cosmology,

New Era of ⁴ Multi-Messenger

Follow-up observations >3000 people

 γ -ray: ~1.734±0.054 sec \Rightarrow sGRB 170817A UV-Opt-IR: 10.86 hr \Rightarrow Macronova/Kilonova X, radio: ~10 day \Rightarrow Afterglow

LVC-EM 17 Band: GCN circ., Circles \propto brightness

GW170817 & GRB 170817A

Kunihito IOKA

Merger of 1.3-1.4 M_{sun} NS: EOS=APR4; stiff but relatively soft

Orbital plane

©Shibata, Hotokezaka

X-Z plane

7

Off-Axis Jet

Off-Axis E_{iso}

 $E_{\rm iso}(\theta_v) \propto {\rm const.}$ for $\theta_v < \Delta \theta$, $E_{\rm iso}(\theta_v) \propto \tilde{\delta}(\theta_v)^2 \quad \text{for} \quad \Delta\theta < \theta_v \lesssim 2\Delta\theta,$ $E_{\rm iso}(\theta_v) \propto \delta(\theta_v)^3$ for $2\Delta\theta \lesssim \theta_v$. $\tilde{\delta}(\theta_v) \equiv \frac{1}{\Gamma[1 - \beta \cos(\theta_v - \Delta \theta)]},$ equally contributing region

$$\delta(\theta_v) \equiv rac{1}{\Gamma(1-eta\cos\theta_v)}.$$

 $\Delta \theta$: jet opening angle, θ_v : viewing angle

Kasliwal+ 17 Gottlieb+ 17 Bromberg+ 17

Time since gravitational-wave trigger (days)

Troja+, Margutti+, Haggard+ 17

Radio Afterglow

X/Radio ratio ~ Synchrotron p=2.2 ($v_m < v < v_c$)

Afterglow Spectrum Early-time afterglow (< 15 d; ×0.001) 1000 Consistent with Late-time afterglow (> 100 d) kilonova a single power-law \Rightarrow Synchrotron $\beta = 0.575 \pm 0.010$ Flux density [µ Jy] $v_{m} < v < v_{c}$ $F_{\nu}(t) \propto \nu^{0.6} t^{0.7}$ 10-3 \Rightarrow e spectrum: $p \approx 2.2$ 10^{-6} Troja+ 18, Marugutti+ 18, Ruan+ 18, 10¹⁵ 10¹² 10¹⁸ D'Avanzo+ 18, Lyman+ 18, Energy [Hz]

Turnovers in Afterglows

Ghirlanda+ 18

Superluminal Motion

Slowly Rising Afterglow

22

Structured Jet?

Kunihito IOKA

2018/3/16

0.70 0.65

0.60

(erg)

0.100

0.010

0.001

Flux density (mJy)

1111

dE/dN

 (θ)

10⁵³

10⁵² 10⁵¹

10⁴⁹

10⁴⁸

100

10

 $\epsilon_{e}=0.02$ $\epsilon_{B}=0.001$ $n=10^{-4}$ cm⁻³

 $\theta_{obs} = 20 \text{ deg}$

 $\epsilon_{\rm B} = 0.0005$ n=10⁻⁵ cm⁻³ _{obs}=17 deg

 $\epsilon_e = 0.1$

θ.

0.1

 θ (deg)

1.0

CH?

 $\beta_{\rm xR}$ 0.55 0.50 0.45 0.40

24 Margutti+ 18 Lazzati+ 17 D'Avanzo+18 Lyman+ 18

t.5000

100.0

fer

10.0

Time since Merger (days)

Fall-back Accretion

100

Time since Merger (days)

1000

 $\begin{array}{l} \text{ on } \beta = 0.61 \\ \text{ lieb et al., 2017} \end{array}$

Structured Jet (Lazzati et al., 2017)

10

Structured Jets (This work)

Flux density (mJy)

1000.0

10⁻⁶

10

Power-Law Jet?

Gaussian Jet?

$E(\theta) = E_0(-\theta^2/2\theta_c^2)$

Table 2. Constraints on the Gaussian jet and Cocoon model param	ļ
distribution with symmetric 68% uncertainties (ie. the 16% and 84% g	1

	Jet		Jet+GW+Planck		_	
Parameter	Med.	Best-fit	Med.	Best-fit	10-5	
θ_{v}	$0.51^{+0.20}_{-0.22}$	0.79	$0.32^{+0.13}_{-0.13}$	0.51	_ 10	
$\log_{10} E_0$	$52.50^{+1.6}_{-0.79}$	54.39	$52.73^{+1.30}_{-0.75}$	56.93	$52.52^{+1.4}_{-0.71}$	5
θ_c	$0.091^{+0.037}_{-0.040}$	0.146	$0.057^{+0.025}_{-0.023}$	0.079	$0.076^{+0.026}_{-0.027}$	0
θ_{w}	$0.55^{+0.65}_{-0.22}$	0.63	$0.62^{+0.65}_{-0.37}$	0.44	$0.53^{+0.70}_{-0.24}$	
$\log_{10} n_0$	$-3.1^{+1.0}_{-1.4}$	-3.8	$-3.8^{+1.0}_{-1.3}$	-6.4	$-3.24^{+0.91}_{-1.3}$	
p	$2.155^{+0.015}_{-0.014}$	2.159	$2.155^{+0.015}_{-0.014}$	2.170	$2.155^{+0.015}_{-0.014}$	2
$\log_{10} \epsilon_e$	$-1.22^{+0.45}_{-0.80}$	-0.73	$-1.51^{+0.53}_{-0.89}$	-1.37	$-1.31^{+0.46}_{-0.78}$	-
$\log_{10} \epsilon_B$	$-3.38^{+0.81}_{-0.45}$	-3.50	$-3.20^{+0.92}_{-0.58}$	-1.27	$-3.33^{+0.82}_{-0.49}$	-
$\log_{10} E_{tot}$	$50.26^{+1.7}_{-0.69}$	52.72	$50.16^{+1.1}_{-0.67}$	54.75	$50.19^{+1.41}_{-0.65}$	5

power law (a=- 0.62 ± 0.40) + cutoff ($E_{peak} = 185 \pm 62 \text{keV}$) Weak tail 34% the fluence of the main pulse $kT = 10.3 \pm 1.5 keV$

Scattered sGRB

Surface Brightness

High Energy γ-Ray?

- Jet & Afterglow
 - Extended & plateau emission to $\sim 10^{4-5}$ sec
 - Off-axis de-beaming
- Central remnant
 - Magnetar
- Merger ejecta
 - Energy injection from central engine?

31

Short GRBs are Not Short Short GRB Too rapid decline: BAT **NOT** afterglow **BUT** central engine XRT ~100 s >> Extended emission Chandra ~ **0.1** s 2x Energy ⇒ Fallback to BH? or **GRB050724** 10⁵ Magnetar? 10^{4} 0.110 100 1000 1 Time since trigger (s) Barthelmy+ 05

Plateau Emission

EM Counterparts

If on-axis & F_X~F_{HEγ}, VERY EASY to detect

CTA follow up even no-detect. is important

Limits on GW170817

HE γ-ray from Afterglow

High Energy γ-Ray?

- Jet & Afterglow
 - Extended & plateau emission to $\sim 10^{4-5}$ sec
 - Off-axis de-beaming
- Central remnant
 - Magnetar
- Merger ejecta
 - Energy injection from central engine?

Supernova Remnant

NS merger remnant ~ Supernova remnant **High energy remnant for NS merger?**

NS Merger Remnant

Merger Remnant Spectrum

Masses in the Stellar Graveyard

2016/10/11

GW150914-like BHs by K. loka

Galactic BHs

70 Gpc⁻³ yr¹ ÷ 0.01 galaxy Mpc⁻³ × 10¹⁰ yr ~ 70000 Merged BHs/galaxy 2016/10/11

GW150914-like BHs by K. loka

Galactic BHs

70 Gpc⁻³ yr¹ ÷ 0.01 galaxy Mpc⁻³ × 10¹⁰ yr ~ 70000 Merged BHs/galaxy

Particle Acceleration

10⁵

10⁴

10³

N(>F)

Log N – Log F BHs ⇔ ε..=0.01 **TeV unIDs?** TeV unID **CTA** prospect Flux dis. is similar σ_v =40km/s (isolated binaries)

BH nebula size:

mass of the disc at radius R

Hydrogen-ionization disk instability

ADAF + Standard disk Outer disk is cold Hydrogen recombines H^{-} ion opacity \Rightarrow S-shaped curve for thermal equilibrium ⇒ X-ray nova-like?

Matsumoto+ 17

Summary

• sGRB170817 & GRB 170817A

- Off-axis jet
- Jet structure?, Spectrum?, Mechanism?

• High energy *γ*-ray for CTA

- Jet, Afterglow, Magnetar, Merger ejecta
- CTA follow-up is important
- BH remnant in our Galaxy
 - Some TeV unIDs? X-ray novae?

Thank

