

Hunting dark matter in TeV region by VHE gamma-ray

ICRR, University of Tokyo Tomohiro Inada

The workshop "The extreme Universe viewed in very-high-energy gamma rays 2018" La Palma, 12/10/2018

Hunting TeV dark matter in the Galactic Center with VHE gamma-rays in the northern hemisphere

ICRR, University of Tokyo Tomohiro Inada

The workshop "The extreme Universe viewed in very-high-energy gamma rays 2018" La Palma, 12/10/2018

Motivation

Dark Matter Search

 \star Dark matter dominates ~23% of mass-energy of the universe.

- ★ Good candidate : Weakly Interactive Massive Particle, WIMP
- ★ "WIMP Miracle" : expects DM mass, O(GeV TeV) range

© XENON collaboration

Many experiments are trying, but no evidence for detection yet...

Production at Collider

© ATLAS collaboration

Indirect Search

© Fermi collaboration

Where is a "next frontier"?

pMSSM model parameter space

(phenomenological minimum supersymmetric model)

Where is a "next frontier"?

pMSSM model parameter space

(phenomenological minimum supersymmetric model)

DM search by Cherenkov telescope

Imaging Cherenkov Technique

★Image intensity
→ Energy of primary
★Image orientation
→ Direction of primary
★Image shape
→ Kind of primary

Reconstructed direction of primary particle

Extensive Air Shower

Camera with PMT pixel

Air Shower Image with Cherenkov telescopes

State Lake

Current Cherenkov Telescopes

- Effective area : $10^4 \sim 10^5 \text{ m}^2$
- Energy range : O(100) GeV O(100)TeV
- Energy resolution : between ~10% and ~20%
- Angular resolution : ~0.06 deg @ ITeV
- FoV : 3 ~ 5 deg
- Stereoscopic system : 2 5 telescopes

Why VHE gamma-ray ?

- **★**DM annihilating into gamma-rays
 - \star Point back to the source
 - \star Can determine DM abundance and distribution in the universe
 - \star Characteristics spectral features
 - \star Can identify the characteristics of particle, mass, cross-section/lifetime

★Focus on line search !

★Line emission easily distinguishable from astrophysical and cosmic-rays backgrounds

Benchmark for DM line search

Test of DM production via thermal freeze-out

Gamma ray Flux from DM

 $M\chi$: Mass of DM particle $<\sigma_{ann} v>$: cross-section times velocity dN/dE : differential gamma-ray yield per annihilation

In case of line search, spectral shape is delta function at $M\chi$

$$\frac{dN}{dE} = 2\delta(E - m_{\chi})$$

 $\label{eq:relation} \begin{array}{l} \rho : dark \ matter \ density \\ \Delta \Omega : solid \ angle \\ I : line \ of \ sight \end{array}$

Depends on the given source, on DM distribution and on the instrument

Observational targets

★Condition to choose targets for DM search

Maximize the quantity of DM signal (close distance and large DM density)

★Dwarf-Sph galaxies

Galaxy satellites of the Milky Way
Close (approximately 100 kpc from GC)
High J-Factor : 10¹⁸ - 10¹⁹ GeV²/cm⁵
Much less astrophysical background
"Point-like" source

★Galactic Center

- Proximity (~8 kpc)
- ♦ Highest J-Factor : ~ 10²⁰-10²¹ GeV²/cm⁵

 High astrophysical background and source confusion.

Extended source

Simulated all-sky map of gamma-rays from DM annihilation PRD 83, 023518 (2011)

Observed targets

★Most popular targets

- dwarf-Sph galaxies
- Galactic Centre region

Deep observation by IACT (recently published)

Source	Telescope	Year	T[h]	log ₁₀ J [GeV ² /cm ⁵]
Fornax	HESS	2010	6.0	17.72
Coma Berenices	HESS	2010-2013	10.9	19.52
Sculptor	HESS	2008	11.8	18.36
Carina	HESS	2008-2010	22.9	17.86
Sagittarius	HESS	2006-2012	85.5	18.34
Segue I	VERITAS	2007-2013	92.0	19.04
Ursa Minor	VERITAS	2007-2013	60.4	18.9
Draco	VERITAS	2007-2013	49.8	18.8
Boötes	VERITAS	2007-2013	14.0	18.2
Segue I	MAGIC	2010-2013	160	19.04
Ursa Major II	MAGIC	2014-2016	100	19.04
GC halo	HESS	2004-2014	254	20.92

Ref : PRD 95, 082001 (2017), arXiv:1810.00995v1, JCAP 02 (2014) 008, JCAP03(2018)009, PRL120, 201101 (2018) PRL 120, 201101 (2018)

Many telescopes are observing dwarf-sph galaxies. But from a point of view about DM search in G.C., results are published **only by H.E.S.S.**

14

Galactic Centre

★Current Status

- Galactic Centre in GeV TeV range is occupied by H.E.S.S...
- because of good observability
 - Zenith angle ~ 20 [deg] (average)
 - Observation time : 254 h (10 years)

GeV range is excellent! But what about the TeV range...? The limit is getting worse rapidly.

E. Moulin@ICRC2017

Galactic Centre

★Current Status

- Galactic Centre in GeV TeV range is occupied by H.E.S.S...
- because of good observability
 - Zenith angle ~ 20 [deg] (average)
 - Observation time : 254 h (10 years)

GeV range is excellent! But what about the TeV range...? The limit is getting worse rapidly.

E. Moulin@ICRC2017

What is the situation for MAGIC?

• G.C observation in La Palma.

· Zenith Angle : ~60 [deg] (High Zenith, HZ)

What is the situation for MAGIC?

• G.C observation in La Palma.

Zenith Angle : ~60 [deg] (High Zenith, HZ)

Merit and demerit HZ observation
Effective area : increasing

by factor ~ I0 in TeV range

Threshold : increasing

~ 500GeV (MAGIC case)

OK, I have to dismiss GeV range..., but what is the situation in TeV range???

Observability of G.C. from La Palma

Let's estimate observation time to be competitive with H.E.S.S !! Gamma-rays rate from DM

$$N_{\rm DM}^{\gamma} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{DM}^2} \int \frac{dN}{dE'} R(E, E') T_{obs} A_{eff}(E) dE' \times J(\Delta)$$

Realistic values

- R(E, E') : Energy Resolution
 - HESS : ~ 10 %
 - MAGIC : ~ 15 % in HZ observation
- Recently ΔE/E of MAGIC is improved very well by K. Ishio(MPP) *ref. DPG 2018*
 - $\boldsymbol{\cdot} \ T_{obs} : \textbf{observation time}$
 - HESS : 254 h
 - MAGIC : ??? h
- Aeff : effective area
 - \cdot MAGIC / HESS ~ 10

Future Prospect

- Problems to be solved
 - Systematics from atmosphere by High Zenith observation.
 - · Ld : I6 20%, Hz : 20 30% for absolute energy scale in MAGIC
 - · cf : J. Aleksic et al. (2012), C. Fruck Ph.D thesis(2015)
 - LIDAR of MAGIC can correct the energy bias in event by event
 - ref. C.Fruck Ph.D theis(2015)
 - It can reduce the effect by atmosphere, estimation in detail is needed.
 - Astrophysical background in G.C. region.
 - Assume the simple background model or just comparison between ON and OFF while observing far points from galactic plane like H.E.S.S.
- But once we establish the method in MAGIC, we can do with CTA-LSTs !
 - We will have "the fast pass" to reach TeV DM.
- Science in G.C. region is fruitful, in any case, it is worth observing!!

Summary

- Many experiments are trying to search DM, but not detected yet.
- TeV region is next frontier for DM search.
- Cherenkov telescope are very strong tools to search DM in TeV range.
 - It has a chance to detect DM or finally "kill" the WIMP paradigm.
- Most popular targets
 - dwarf spheroidal galaxies :
 - low background & high DM density. many telescopes are observing.
 - Galactic Center :
 - High background & Very high DM density.
 - So far, results about DM search are published only by H.E.S.S.
- Strong tool for northern site : High zenith observation.
 - MAGIC is possibly competitive with H.E.S.S. in TeV range
 - We can get "fast pass" to reach TeV DM.

• Stay tuned!!

