#### Multi-messenger Transients in the CTA Era Susumu Inoue (RIKEN) on behalf of many collaborators

#### Gamma Ray Bursts VHE Neutrinos



Nov 2012

Fast Radio Burst

#### **Gravitational Waves**



Flares

#### Multi-messenger Transients Now Susumu Inoue (RIKEN) on behalf of many collaborators

#### Gamma Ray Bursts VHE Neutrinos



Oct 2018



**Gravitational Waves** 



Flares

#### **Electroweak Transients Now** Susumu Inoue (RIKEN) on behalf of many collaborators







#### outline

- 1. electroweak observations of TXS 0506+056 / IC-170922A IceCube, Fermi, MAGIC+, 2018, Science 361, eaat1378
- 2. interpretation via py scenarios (one-zone)
  - a. internal photons as targets Cerruti, Zech, ... SI+; 1807.04335
  - b. "external" photons: jet-sheath (structured jet) scenario MAGIC Coll., ApJ 863, L10; 1807.04300 (Bernardini, Bhattacharya, SI, Satalecka, Tavecchio)
  - c. external photons: radiatively inefficient accretion flow Righi, Tavecchio, SI; 1807.10506
  - d. brief comparison with other work Keivani, Murase+
- 3. summary



#### v + EM observations of IC-170922A / TXS 0506+056



#### **Fermi-LAT:**

- coincident with blazar TXS 0506+056 in bright state (0.5 yr-long)
- significance of association  $\sim 3\sigma$

-> possible source of possible astrophysical high-energy neutrino

#### **MAGIC:**

- ~6 $\sigma$  detection >~100 GeV, <day timescale flaring
- steep spectrum ( $\Gamma$ ~-3.5 -4.0), no significant time-dependence
  - -> crucial contraints on physical conditions of source

#### v + EM observations of IC-170922A / TXS 0506+056 **IC-170922A** 01 Oct 17 15 Sep 17 2009 2013 2017 15 Oct 17 15 October, 2017 2009 2017 15 September, 2017 1 October, 2017 2010 2011 2012 2013 2014 2015 2016 Flux 10<sup>-11</sup> cm<sup>-2</sup> s<sup>-1</sup> MAGIC (E>90 GeV) VERITAS (E>175 GeV) HESS (E>175 GeV) <day timescale MAGIC variability $_{10^{-7}\ \mathrm{cm}^{-2}\ \mathrm{s}^{-1}}^{\mathrm{Flux}}$ ● Fermi-LAT (E>100 MeV) ■ AGILE (E>100 MeV) В

Swift (0.3 keV - 10 keV)

2

**Fermi-LAT** 

Swift

C



IceCube, Fermi, MAGIC+, 2018, Science 361, eaat1378



IceCube, Fermi, MAGIC+, 2018, Science 361, eaat1378

#### v + EM observations of IC-170922A / TXS 0506+056



MAGIC Coll., ApJ 863, L10 (1807.04300)



IceCube, Fermi, MAGIC+, 2018, Science 361, eaat1378

# blazars AGN with relativistic jet viewed near-axis o spectra consistent with mainly electron sync.+IC



flat spectrum radio quasars (FSRQs): high L, strong emission lines BL Lac objects (BLLs): low L, weak emission lines

#### **Redman's theorem**

"A competent theoretician can fit any given theory to any given set of facts."

#### neutrino emission from blazars

- py generally favored over pp in AGN jets - target  $\gamma \epsilon'_{\gamma} > \sim 20 m_{\pi} m_{p} c^{4} / E_{\nu} \delta^{-1}$  $\sim 0.4 \text{ keV} (E_{\nu}/300 \text{ TeV})^{-1} (\delta/20)$
- unlike FSRQs, BL Lacs thought to: lack bright external γ fields, have low internal sync. γ fields
  -> PeV ν production inefficient?
- one-zone models (e+p co-accel.) with internal syn. targets only: very high L<sub>p</sub> required Cerruti, Zech, Boisson, Emery, SI, Lenain, 1807.04335 see also Gao+ 1807.04275

 $\log(E_vL_{E_v}$  [erg s<sup>-1</sup>])



#### neutrino emission from blazars

- enhanced py efficiency via external y fields in BL Lacs? I. sync. from sheath in structured jets MAGIC Coll. 1807.04300 II. radiatively inefficient accretion flows (RIAFs) Righi+ 1807.10506 focus on one-zone models (electron+proton co-accelerated)

- questions
- 1. accompanying hadronic emission consistent with observed SED? s<sup>-1</sup>])
- 2. accompanying yy absorption consistent with observed SED?

log(E<sup>`</sup>vL<sub>E`</sub>, [erg

42

- 3. role of external Compton relative to SSC?
- 4. proton maximum energy (UHECR accelerator)?



#### **3a. pγ scenarios with internal photons only model description**

Cerruti, Zech, ... SI+ 1807.04335

leptonic part

- emission region: spherical with radius R,

magnetic field B, Doppler factor  $\delta$ 

- electron distribution: broken power-law  $\gamma_{e,min}$ ,  $\gamma_{e,max}$ ,  $\alpha_{e1}$ ,  $\alpha_{e2}$
- leptonic emission: synchrotron, SSC

hadronic part follow Cerruti+ 15, Zech+ 17

- proton distribution: power-law  $\gamma_{p,min}=1$ ,  $\gamma_{p,max}$  (or  $\eta$ ),  $\alpha_{p1}=\alpha_{e1}$
- hadronic emission

 $\begin{array}{lll} p+\gamma_{LE}\rightarrow N+\pi^{0},\pi^{+-} & \text{photo-meson} & \text{SOPHIA: Mücke+ 02,03} \\ \pi^{+-}\rightarrow\mu^{+-}+\nu\rightarrow e^{+-}+3\nu & \pi^{0}\rightarrow 2\gamma \\ \mu^{+-}+B\rightarrow\mu^{+-}+\gamma & \text{muon synchrotron} \\ p+\gamma_{LE}\rightarrow p+ \ e^{+}e^{-} & \text{photo-pair (Bethe-Heitler)} & \text{Kelner \&} \\ p+\gamma_{LE}\rightarrow e^{+}e^{-} & \text{electron-positron} \\ e^{+}e^{-}+B\rightarrow e^{+}e^{-}+\gamma & \text{sync. cascade} \end{array}$ 

 $p+B\rightarrow p+\gamma$  proton synchrotron



- EM SED reproduceable with proton synchrotron dominating  $\gamma$  rays, py cascade non-negligible at VHE
- BUT neutrino flux too low to be viable
  - -> detection of single  $\nu$  provides crucial discriminant



- EM SED reproduceable with SSC dominating γ rays, non-neglible: pγ cascade at VHE, BH at X-ray
- BUT requires rather extreme parameters, e.g.  $L_p \sim 10^{48}$  erg/s,  $\gamma_{e,min} \sim 500$
- hard  $\nu$  spectra also constrained by IC point source search
  - -> scenarios with external photons likely more favorable

#### **3b.** py scenarios with "external" photons from jet sheath

- jet structure with slower sheath (layer) surrounding faster jet (spine)
  - -> supported by observations, numerical simulations
- synchrotron photons from sheath seen
  Doppler boosted in jet frame
  -> enhanced target for py v production, EC
- caveat: spectrum of sheath radiation not well defined a-priori \_\_\_\_\_ 400

limb-brightened structure in radio galaxies e.g. 3C84 (NGC 1275)



MAGIC Coll. 1807.04300





#### jet-sheath model description

#### MAGIC Coll. 1807.04300

<u>leptonic part</u> follow Tavecchio+ 14, 15

- emission region: cylindrical with radius R, length dR=R,

magnetic field B, Lorentz factor  $\Gamma_i$ , viewing angle  $\theta_v$ 

- electron distribution: broken power-law  $E_{e,min}$ ,  $E_{e,br}$ ,  $E_{e,max}$ ,  $s_1$ ,  $s_2$
- photons from sheath with Lorentz factor  $\Gamma_s$ , broken power-law spectrum
- leptonic emission: synchrotron, SSC, EC

hadronic part follow Böttcher+ 13, Cerruti+ 15

- proton distribution: power-law  $E_p^{-2}$  with exp. cutoff  $E_{pmax}$
- hadronic emission

 $p+\gamma_{LE} \rightarrow N+\pi^{0}, \pi^{+-} \text{ photo-meson} \\ \pi^{+-} \rightarrow \mu^{+-} + \nu \rightarrow e^{+-} + 3\nu \quad \pi^{0} \rightarrow 2\gamma \\ \mu^{+-} + B \rightarrow \mu^{+-} + \gamma \quad \text{muon synchrotron} \\ p+\gamma_{LE} \rightarrow p+e^{+}e^{-} \quad \text{photo-pair (Bethe-Heitler)} \\ \downarrow^{\gamma+\gamma_{LE}} \rightarrow e^{+}e^{-} \\ e^{+}e^{-} + B \rightarrow e^{+}e^{-} + \gamma \quad \text{electron-positron} \\ \text{sync. cascade} \end{cases}$ 

 $p+B\rightarrow p+\gamma$  proton synchrotron

Kelner & Aharonian 08





 $\bar{v}_{\mu}$ 

γπ

#### **3c.** py scenarios with external photons from RIAFs

- expected at low accretion rates ( $\dot{m}=\dot{M}/\dot{M}_{Edd}\sim<0.01$ ), inferred for SMBHs hosting BL Lacs
- radiatively inefficient -> hot, geometrically thick, optically thin
   <-> standard accretion disk for high m
- broadband spectrum from radio to X-rays
- strong dependence of UV-soft X intensity on m



radiatively inefficient accretion flows



#### **3d. brief comparison with other work** generic internal/external photon scenarios Keivani, Murase, Petropoulou+ 1807.04537

- generic internal/external photon scenarios
- hadronic-dominant scenarios difficult, likely leptonic-dominant
- X-ray cascade constraints, γ-ray absorption constraints crucial
- EHE rate <0.01/yr -> 1-zone models severely constrained if not ruled out



- choice of data set: different X-ray + UV, no VHE
- degree of optimism (~personal preference)





#### diffuse high-energy neutrinos: constraints on blazar contribution



## 2LAC: blazar contribution <7-27% of diffuse v flux 2FHL: blazar contribution <4-6% of diffuse v flux

blazars strongly constrained as main sources of diffuse HE  $\nu$ see however Palladino+ 1806.04769

#### **summary** electroweak observations/interpretation of TXS 0506+056 <u>observations</u>

- IceCube: detection of ~300 TeV neutrino, high signalness, well localized
- Fermi-LAT: bright BL Lac TXS 0506+056 associated at  $3\sigma$  CL
- MAGIC: <1 day variability, steep spectrum above ~100 GeV interpretation via pγ scenarios, one zone (e+p co-accelerated)
- internal target photons only: challenged by required high proton power
- "external" photons from jet sheath: plausible & consistent
  - observed SED predominantly leptonic (sync.+external Compton)
  - hadronic subdominant, critically constrained by X-ray (+VHE)
  - GeV-TeV break consistent with γγ absorption entailed by pγ production of ~300 TeV neutrino
  - proton max energy ~<10<sup>18</sup> eV (comoving) possible in principle but not well constrained -> may or may not be UHECR accelerator
- external photons from RIAFs: also promising but only for LBLs
   potential explanation for why TXS 0506+056 and not HBLs
- addition of single neutrino to MWL SED provides crucial new insight dawn(?) of electroweak astronomy

#### **summary** electroweak observations/interpretation of TXS 0506+056 <u>questions</u>

- relation to other blazars: why TXS 0506+056 and not HBLs, FSRQs?
- origin of 2014-2015 neutrino flare during low gamma-ray state (if real)
- contribution to diffuse flux, origin of dominant source(s)

future

. . .

- more neutrino+EM observations necessary, especially:
  - X-rays for constraining cascade emission
  - VHE for constraining py target density via yy absorption -> CTA
- more comprehensive modeling
- the game has just begun, further exciting times ahead!

## **Q: MAGIC vs CTA?**







#### CTA LST -1CTA LST 0CTA LST 1



### **Q: MAGIC vs CTA?**

# MAGIC IMAGIC IICTA LST -1CTA LST 0

#### CTA LST 1 MAGIC III

A: MAGIC+CTA LST 1 as much as possible: win-win no-brainer!