CTA-Japan workshop 2017

Dark Matter Search in dwarf Spheroidal galaxies

work in progress (2017)

Nagisa Hiroshima (ICRR, KEK)

and

Masaaki Hayashida (Chiba.U), Kaz Kohri (KEK, SOKENDAI)

Contents:

1. Introduction

motivations for searching dark matter in dwarf spheroidal galaxies

2. Method

How can we search DM in dSph with certain density profile?

3. Prediction

4. Conclusion

Introduction

Dark Matter search in dwarf spheroidal galaxies

Evidence for the Dark Matter

1, Large Scale Structure

 $\Omega_{DM}h^2 \sim 0.258$

2, Rotation Curves of Galaxies

3, Bullet clusters

We need something with little electromagnetic interactions

Strategies:

Indirect Search

Advantages of CTA:

DM + DM -> (particles in the Standard Model)

 $DM+DM \rightarrow 2\gamma$

Why 'TeV'?

DM as a thermal relic of our universe: $\Omega_{DM}h^2 \sim 0.258$

$$\frac{dn_{DM}}{dt} + 3Hn_{DM} = -\langle \sigma v \rangle (n_{DM}^2 - n_{DM,eq}^2)$$

$$3Hn_{DM} \sim \langle \sigma v \rangle n_{DM}^2 \quad @ \text{ thermal freeze out } (z_f)$$

$$\frac{\text{conserved}}{s} \sim \frac{n_{DM}}{s} \sim \frac{H}{\langle \sigma v \rangle s} \propto (\langle \sigma v \rangle T)^{-1}$$

 $m_{DM}/T_{zf} \sim 20 - 30$

$$\frac{\rho_{DM}}{s} \propto m_{DM} (<\sigma v > m_{DM})^{-1} \propto <\sigma v >^{-1}$$

$$\Omega_{DM}h^{2} = 0.1 \left(\frac{\langle \sigma v \rangle}{3 \times 10^{-26} [cm^{3}s^{-1}]}\right)^{-1}, \langle \sigma v \rangle \sim \left(\frac{0.1}{\text{TeV}}\right)_{6}^{-2}$$

target: dwarf spheroidal galaxies (dSph)

1, galactic center : J=10²²-10²⁴ \odot , contamination \triangle 2, dwarf spheroidal : J=10¹⁷-10²⁰ \bigcirc , contamination \bigcirc galaxies (dSphs)

Methods

spatial extension of dSphs

 $\rho_{DM}(r)$ & extension θ_{max} is derived from stellar kinematics data

see Geringer-Sameth et al., 2015 (spherical) Hayashi et al., 2016 (axisymmetric), etc.

We take the density profile of dSphs into account

DM profile of dSph

 ho_0 $\rho_{DM}(r)$ generalized NFW $\frac{\beta-\gamma}{\alpha}$ $\left(\frac{r}{r_s}\right)^{\gamma}$ (1+ $\left(\frac{r}{r_{\rm c}}\right)$ 104 10³ $\propto r^{-\gamma}$ 10² tho[Msolar/pc3] 10¹ 100 10^{-1} $2^{-(\beta-\gamma)/2}$ 10-2 $\propto |r^{-\beta}$ 10^{-3} r_{s} 10^{-4} 10-2 10¹ 10³ 10^{-1} 100 10² 104 r[pc] stellar kinematics data gives $(\alpha, \beta, \gamma, \rho_s, r_s)$ 11

source selection

Targets: compact , dense dSph

name	ra [deg]	dec [deg]	dist [kpc]	$ heta_{max}$ [deg]	$\log_{10}(J_{\theta max})$ [GeV ² /cm ⁵]	log ₁₀ (J _{<0.5°}) [GeV ² /cm ⁵]
Draco	260	57.9	76	1.3	19.05	18.84
Coma	186	23.9	44	0.31	19.02	19.02
Leo II	168	22.2	233	0.23	17.97	17.97
Ursa Major II	133	63.1	32	0.53	19.42	19.42

(Geringer-Sameth et al., 2015)

Profiles:

Profiles:

Particle Physics Model

Conclusion

Conclusion

- CTA is very suitable for dark matter (DM) search
- dwarf spheroidal galaxies (dSphs) are good targets because of their clear environments
- We should be careful about the spatial structure of dSphs when we search DM in those with CTA
- CTA is expected to reach $\langle \sigma v \rangle \sim 10^{22} 10^{23}$ cm³/s with 50h observations for dSph DM search