X-Ray Measurements of Cosmic-Ray Acceleration Efficiencies in Supernova Remnants

Satoru Katsuda (Saitama University)

Cosmic Rays (CRs)

Energies and rates of the cosmic-ray particles

Cosmic rays were discovered by a balloon experiment led by V. Hess in 1912.

A long-standing question connected to astrophysics: Where are CRs accelerated?

Supernova Remnants: Promising Origin of Galactic CRs

 Energy per unit time to maintain Galactic CRs: L_{GCR} = 10⁴⁰⁻⁴¹ erg/s = U_{GCR} ~ 10⁵⁵ erg / τ ~ 10⁷ yr

 Energy per unit time given by supernova explosions: L_{SN} = 10⁴² erg/s = E_{SN} ~ 10⁵¹ erg * R_{SN} ~ 1/30 yr⁻¹

 The energy budget can be balanced, if 10% of SN explosion energy goes into CR acceleration: L_{GCR}/L_{SN} ~ 0.1 (e.g., Baade & Zwicky 1934).

Mounting evidence for SNRs being CR accelerators

X-ray synchrotron \rightarrow Electrons up to 100 TeV

VHE gamma-rays
→ Electrons up to 10 TeV

GeV gamma-rays → Protons up to GeV

How to Estimate CR Acceleration Efficiencies at SNR Shocks

Measurements of CR acceleration efficiencies have been still scarce.

High-Resolution X-Ray Spectroscopy: A New Clue to CR Acceleration Efficiencies

CTA Workshop @ U. Tokyo

The Hitomi Satellite

<u> – Hitomi:</u>

- The 6th Japanese X-ray astronomy satellite
- Successfully launched on 2016/2/17
- Lost its ground contact on 2016/3/26

X-ray micro-calorimeter (SXS):

- E/ΔE: ~200@1keV
- Spatial resolution: 1'
- FoV: 3'x3' (6x6 array)
- Dynamic range: 0.2-10 keV

SXS detector assembly

Hitomi Observation of N132D

SXS spectrum with an exposure time of only 1 hr due to attitude control failure

- Very bright in radio, optical,
 X-ray, and gamma-rays
- Core-collapse, ~2500 yr old

Hitomi Collaboration (2018) accepted by PASJ on 2017-12-06

S Hea & Fe Hea with the SXS

 \rightarrow Asymmetric ejecta

 $\sigma_{\rm Fe-K}$ ~ 11 eV \rightarrow kT_{Fe} ~ 150 keV

Doppler velocity wrt. LMC: -65 (-450--435) km/s → Swept-up ISM

 $\sigma_{\rm S-K}$ ~4 eV \rightarrow kT_s~90 keV

Challenges with Gratings on XMM/Chandra

Reflection grating

Slitless \rightarrow Degradation in λ resolution:

 $\Delta\lambda \sim 0.13 * \Delta ext(arcmin) Å \Delta ext_{min}(spatial resolution): 0.25' (E/<math>\Delta$ E ~ 200 @1keV; cf. E/ Δ E ~ 20 for CCD)

Strong for relatively large sources (a few arcmin size is OK)

Transmission grating

Slitless \rightarrow Degradation in λ resolution: $\Delta\lambda \sim 0.67 * \Delta ext(arcmin) Å$ Δext_{min} (spatial resolution): 0.01'

complementary Strong for small(")-scale features

2017/12/18

Example Spectra of the RGS and HETG

However, the RGS spectra are spatially integrated over the entire SNR, and therefore the interpretations are complicated.

 \rightarrow Bright hot spots in Galactic SNRs should be good sites for RGS spectroscopy.

A Knot in NW SN 1006

Vink et al. (2003)

Knot's size ~ 0.4' (FWHM) \rightarrow RGS spectral resolution for O VII ~ 3 eV

2017/12/18

Temperature Nonequilibration: $T_{O VII} >> T_e!$

Shock Speed Measurements

Proper motion measurement gives:

V_{shock} = 3000 km/s at a distance of 1.85 kpc

(Raymond et al. 2017 see also Winkler et al. 2003; SK et al. 2013)
 → Expected kT₀ = 280 (V_{shock} / 3000 km s⁻¹)² keV (@maximum), which agrees with the RGS measurement (→ No energy for CRs).

Considering Coulomb Equilibration

However, this may not be true if the plasma was heated by a reverse shock.

Ejecta Knots in SE Tycho's SNR

No Cr Mn lines (Yamaguchi et al. 2017)

Shock Speed Measurement

Chandra's difference image (2000 - 2007)

Proper motion measurements: $V_{shock} = 4300 \text{ km/s}$ at d = 3 kpc (SK et al. 2010)

 \rightarrow Expected ion temperatures:

 $\label{eq:KT_oxygen} \begin{array}{l} {\rm kT_{Oxygen}} = 580 \; ({\rm V_{shock}} \, / \, 4300 \; {\rm km \; s^{-1}})^2 \; {\rm keV} \\ (\sigma_{O \; Ly\alpha} = 4.1 \; {\rm eV}) \\ {\rm kT_{Fe}} = 2.0 \; ({\rm V_{shock}} \, / \, 4300 \; {\rm km \; s^{-1}})^2 \; {\rm MeV} \\ (\sigma_{FeL} = 5.2 \; {\rm eV}) \end{array}$

RGS Observation in 2017

Ejecta Knots in Puppis A

Observation date: 2012-10-20 Exposure time: 21 ks ONeMg-rich ejecta features (Winkler et al. 1985; SK et al. 2008; 2010)

Emission Profiles (RGS Response)

RGS Spectrum

Spatial displacement <-> Wavelength shift 8 arcmin \rightarrow 1.1 Å ($\Delta\lambda \sim \theta \times 0.138$ /m Å) Lines from the knot and filament are detected!

Spectral Modeling

Blue=Knot Red=Filament Green=Total (incl. local BG)

	Knot	Filament
Doppler velocity	1500 ± 200 km/s	-650 ± 130 km/s
Line width (σ)	< 0.9 eV (→kT _o < 30 keV)	

Shock Speed Estimate

Estimate of a forward shock speed

- Line-of-sight velocity: 1500 km/s
- Proper motion: ~0.12 "/yr (Winkler et al. 1988) \rightarrow 1260 km/s
- \rightarrow Gas motion: V_{shocked gas} = sqrt(1500²+1260²) = 2000 km/s
- \rightarrow Forward shock speed: V_{shock} = 4/3 V_{gas} ~ 2500 km/s

 $kT_0 = 195 (V_{sh}/2500 \text{ km/s})^2 \text{ keV} (@maximum, n_et = 0),$ which is much higher than the upper limit of $kT_0 < 30 \text{ keV}$ \rightarrow Extremely high CR acceleration efficiency ?!

Coulomb Equilibration

X-Ray Astronomy Recovery Mission

Telescope

© ASTRO-H

<u>□ XARM:</u>

- The 7th Japanese X-ray astronomy satellite
- To be launched in 2021
- Carries X-ray calorimeter & X-ray CCD

X-ray micro-calorimeter (SXS):

- E/∆E: ~200@1keV (Non-dispersive!)
- Spatial resolution: 1'
- FoV: 3'x3' (6x6 array)
- Dynamic range:0.5-25 keV

SXS detector assembly

Spectral Simulation with XARM

A Little Thought about Synergy with CTA

THE ASTROPHYSICAL JOURNAL, 840:74 (14pp), 2017 May 10

https://doi.org/10.3847/1538-4357/aa6d67

© 2017. The American Astronomical Society. All rights reserved.

CTA Collaboration (2017)

Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946

• CTA will reveal leptonic/hadronic contribution in SNRs, as well as its spatial distribution.

X-Ray Measurements

2017/12/18

Summary

- SNRs are the best candidates for Galactic cosmic rays. However, the CR acceleration efficiency at SNR shocks has been rarely measured.
- High-resolution X-ray spectroscopy is a hope to measure CR acceleration efficiencies.
- Current measurements with gratings onboard XMM revealed CR acceleration efficiencies (including upper limits) in a few SNRs.
- X-ray astronomy recovery mission (XARM) will greatly enhance this field.