

Breaking News

Shigeru Yoshida ICEHAP - Chiba university

The Cosmic Neutrinos **Production Mechanisms**

CHIBA

Realtime Multi-Messenger

South Pole

Northern Hemisphere

GCN-TAN

CHIBA UNIVERSITY

IceCube Realtime Analysis Chain

And the story began here

SMS notice pinged my (non-smart) cellphone

5:55 am, Saturday, September 23, JST

the greatest wakeup call I've ever had in Saturday morning

Identified by the EHE realtime stream

Date (UT):2017-09-22 20:54:30.436263 Run 130033 Evt 50579430

NPE:5785.94156 EHE linefit zenith 97.5 -

Revised zenith 95.7 RA: 77.43 DEC: 5.72 (J2000)

Event selections for EHE real time stream CHIBA Relaxed cuts on NPE-cos(zenith) plane for track-like EHE L3 χ^2 EHE trackfit < 80

Atmospheric BG

log10(NPE) yea "GZK " v search 104 10^{3} Events Real time v 10² 6.5 10 10^{-2} 5.5 10 10* 10 4.5 0 10 10⁻¹⁰ 3.5 10⁻¹¹ 10^{-12} cos(θ)

E⁻² signal

IceCube 170922A NPE 5,786 cos(zenith) -0.13

Atmospheric BG

E⁻² signal

IceCube 170922A

NPE 5,786 cos(zenith) -0.13 right on the "sweat spot" signalness : 56.5 % Atmospheric BG E⁻² signal

Neutrino Energy ? Initial estimate reported in the GCN: 120 TeV

ν Energy Vs NPE (E^{-2.5})

 $\rightarrow v_{\mu}$ energy pdf at the earth surface

200TeV~ 7.5PeV

Log(NPE)

CHIBA

UNIVERSITY

Summary of the follow-up observations

Observatory	Observation Time	Detection	Source	Comments
Fermi-LAT	Sept 15-27	1	TXS 0506+056 / 3FGLJ0509.4+0541 / 3FHLJ0509.4+0542	Flaring >800 MeV
Swift-XRT	Sept 28 00:09-22:42 UT Sept 27 18:52 UT, 5 ks Sept 80 - Oct 7, 2 ks	1	1SXPS J050925.9+054184	Spectral softening/evolution
Liverpool	Sept 28, 900 s	1	TXS 0506+056 (PMN J0509+0541)	Typical BL Lac spectrum "Bluer when brighter"
ASAS-SN	-50 days	1	TXS 0506+056	~0.5 mag in V-band
AGILE	Sept 18 12:00 UT + 8 days ±6 days	1	< 1° from 3FGLJ0509.4+0541	Excess > 100 MeV
H.E.S.S.	Sept 23 01:05 UT, 1 hr Sept 24 08:10 UT, 1 hr	×		Set 90% CL UL on v fluence
HAWC	Sept 15 09:04 UT - Sept 19 14:41 UT Sept 21 08:41 UT to Sept 27 14:10 UT	×		At T0, this location was not in HAWC's fov
ANTARES	± 1 hr and ± 1 day of T0	×		Set 90% CL UL on v fluence
INTEGRAL	±800 s of T0	×		Set 8σ UL
IC multi-day	Sept 15 00:00 UT - Sept 29 00:00 UT	×		
VERITRAS	Sept 28, 1 hr + Sept 28-89, 5.5 hrs	×		~200 GeV

And many more!

Fermi Blazar TXS 0506+56 Right on top of IceCube 170922A

IceCube-170922A PKS 0459+060 90% PKS 0502+049 10 MG1 J050533+0415

image made by Masaaki Hayashida (Fermi)

Declination

Right Asension

Fermi Blazar TXS 0506+56

Redshift unknown (0.15<z<1.6 (0.58))

categorized as ISP-BL Lac by Fermi

(but the classification does not mean we understand the type of this blazar)

CHIBA

UNIVERSITY

The source images in multi-wavelength bands

We are on the road to checkmate a cosmic ray origin

chess

Japanese "Shogi"

ICECUBE

No Blazars as major sources

PeV

Blazar stacking analysis

THE CONTRIBUTION OF *FERMI*-2LAC BLAZARS TO DIFFUSE TEV-PEV NEUTRINO FLUX

TeV

M. G. Aartsen¹, K. Abraham², M. Ackermann³, J. Adams⁴, J. A. Aguilar⁵, M. Ahlers⁶, M. Ahrens⁷, D. Altmann⁸, K. Andeen⁹, T. Anderson¹⁰

Show full author list

Published 2017 January 17 • © 2017. The American Astronomical Society. All rights reserved.

The Astrophysical Journal, Volume 835, Number 1

EeV

Search for a cumulative ν excess from 862 2LAC blazars

Global Ultra-High Energy (UHE) Diffuse fluxes

UNIVERSITY

The (yet-unknown) UHE cosmic ray (UHECR) sources are also the origin of IceCube TeV V?

UHECR-IceCube ~ v ~ Unified ~ Model

The (yet-unknown) UHECR sources are also the origin of IceCube TeV V?

A genetic analytical model

- Optical Depth 0.1
- SFR-like evolution

Can be consistent with UHECR data and v UL at higher energies

taking the formula from Yoshida & Takami PRD 2014 Yoshida & Ishihara PRD 2012

UHECR-IceCube ~ v ~ Unified ~ Model

The (yet-unknown) UHECR sources are also the origin of IceCube TeV V?

A genetic analytical model

- Optical Depth 0.1
- FSRQ-like evolution

Inconsistent with v UL at higher energies

taking the formula from Yoshida & Takami PRD 2014 Yoshida & Ishihara PRD 2012

Tracing *history* of the particle emissions with v flux

rare

Intensity gets higher

0.6

0.8

Past

if the emission is more active in the past because v beams are penetrating over cosmological distances frequent Redshift (z) Present Hopkins and Beacom, Astrophys. J. 651 142 (2006) The cosmological evolution Many indications that the past was more active. Mpc^{-3}) o. Star formation rate \rightarrow The spectral emission rate (M_{\odot}) ρ**(z) ~ (1+z)**^m m= 0 : No evolution

0.2

0.4 log(1+z) 62

IceCube collaboration Phys.Rev.Lett.**117** 241101(2016)

UHECR source is cosmologically LESS evolved

Any sources with evolution compatible or stronger than star formation rate are disfavored

UHECR-IceCube ~ v ~ Unified ~ Model

Energetics requirements

c.f. GRB $L_{\gamma} \sim 10^{44} \text{ erg/Mpc}^3 \text{ yr}$ FSRQ $L_{\gamma} \sim 10^{46} \text{ erg/Mpc}^3 \text{ yr}$

UNIVERSITY

UHECR-IceCube v Unified Model genetic requirements to UHECR sources

cosmological evolution compatible or weaker than star formation rate

IceCube bounds on GZK $\boldsymbol{\nu}$

Fermi extra-galactic diffuse γ -ray bound

optical depth $\tau > 0.01$ if E^{-2.6}, $\tau > 0.1$ if E^{-2.3} or harder

IceCube TeV-PeV ν flux

c.f. GRB internal shock τ ~0.1, afterglow O(10⁻³), BL Lac O(10⁻⁶)

Energy luminosity O(10⁴⁸) erg/Mpc³ yr @ E>10 PeV

extrapolated from UHECR luminosity

BL Lac, GRB internal shocks, FSRQs all unlikely

A major class of (UHE) cosmic ray sources is CHIBA VINIVERSITY

The solution

IceCube-Gen2

IceCube-Gen2 the staging strategy

IceCube-Gen2 Phase1

towards precise measurements of ice's optical characteristics

Improving the angular resolutions of v-induced shower events for multi-messenger astronomy

The present – 15 degree error

Yes we can! 4 degree error

With better understandings of **C light scattering**

D-Egg detectors map out Ice

D-Egg schematics

D-Egg prototypes

