Interstellar Medium in the Middle-aged SNRs

Satoshi Yoshiike Nagoya University

SNR: Origin of Galactic CRs ?

- + Observe γ-ray produced by hadronic process ‡ $p(CR) + p(ISM) \rightarrow \pi^0 + ..., \pi^0 \rightarrow 2\gamma$
- + Two approaches:

SNR: Origin of Galactic CRs ?

- + Observe γ-ray produced by hadronic process $p(CR) + p(ISM) \rightarrow \pi^0 + ..., \pi^0 \rightarrow 2\gamma$
- + Two approaches:

CR proton ISM proton y-ray

- 1. Characteristic spectral break
 - + Direct evidence
 - + Useful for middle-aged SNRs
 - + NO information about ISM proton

- + NO information about ISM proton
- ‡ enable to estimate Wp

Middle-aged SNRs:W44, IC 443

Image: GeV γ-ray (Fermi-LAT) Contours: 1.4 GHz conti. (VLA)

Image: TeV γ-ray (VERITAS) Contours: 1.4 GHz conti.

(DRAO Synthesis Telescope)

+ Spectral break was confirmed by AGILE and Fermi-LAT

Giuliani+ '11, Ackermann+ '13

 This work: Analyzed ISM (CO, HI, Dust) data to identify the target protons for the hadronic γ–rays.

NANTEN2 telescope

- Location: Chile, Atacama (alt. 4,850m)
- Frequencies:
 - ✓ 100 GHz: CO(J = 1−0)
 - HPBW ~ 2.7'
 - → ~ 2.3 pc (at W44)
 - \rightarrow ~ 1.1 pc (at IC 443)
 - ✓ 200 GHz: CO(*J* = 2−1)

HPBW ~ 1.5'

- \rightarrow ~ 1.3 pc (at W44)
- → ~ 0.65 pc (at IC 443)
- Advantages
 - ✓ Moderate beam size

Good for observing large area and/or many objects.

✓ Multi-line observation

Investigate for physical properties of ISM

- + Large scale distribution of ¹²CO(*J*=1–0) by NANTEN
 - **‡** W44 is embedded in "Molecular Ridge".

- + Velocity Channel Map of ¹²CO(J=2–1): 30 60 km/s, 5 km/s interval
 - ↓ V = 40 50 km/s : GMC is located at Eastern-side
 - V = 50 60 km/s : Clouds surround the shell

The extreme Universe viewed in very-high-energy gamma rays 2017 (Dec. 18 – 19, 2017)

- + Velocity Channel Map of ¹²CO(J=2–1): 30 60 km/s, 5 km/s interval
 - V = 35 45 km/s : Candidate of the target protons

+ Distribution of ISM proton column density

- + Target protons are dominated by molecular gas: $n(H_2):n(HI) \approx 10:1$
 - † different situation from young SNRs: $n(H_2):n(H_1) \sim (0-1):1$
- t $n_{\rm p} \simeq 200 \, {\rm cm}^{-3}$, $W_{\rm p} \simeq 10^{49} \, {\rm erg} \, (\sim 1 \% \times E_{\rm SN})$

IC 443: Molecular Gas Distribution

- + Narrow component: -3 km/s clouds
- + Clumps: (Blue) -18 -6 km/s, (Red) 0 +10 km/s
 - ‡ Broad wings + High intensity ratio of CO 2–1/1–0

IC 443: Gas Location relative to the SNR

- + Spatial Comparison: Soft X-ray (0.4–0. 75 keV) vs CO (J=1–0)
- + X-ray shows anti-correlation with -3km/s cloud
 - ‡ -3km/s clouds is located in front of IC443

au_{353} : Tracer of Hydrogen

+ Dust opacity at 353 GHz, τ_{353} (*Planck/IRAS*)

- $\ddagger \tau_{\rm 353} \lesssim 10^{\text{-3}}, \, \delta \tau_{\rm 353} / \tau_{\rm 353} \lesssim 10 ~\%$
- ‡ Good tracer of interstellar hydrogen

Fukui+ '14 (MBM 53, 54, 55 + HLCG 92-35), '15 (All-sky), '17 (MHD simulation)

Planck Collaboration+ '14

⁺ Okamoto+ '17 derived the relation between $N_{\rm H}$ and τ_{353} in the Perseus clouds.

$$N_{\rm H} = (9.0 \times 10^{24}) \times (\tau_{353})^{1/1.3} \,({\rm cm}^{-2})$$

au_{353} : Tracer of Hydrogen

- + CO and τ_{353} : similar spatial distributions
- + HI: a low contrast and more extended distribution
 - \rightarrow Corresponds to a diffuse part of $\tau_{353.}$

 τ_{353} is useful as the tracer of H in IC 443 region !

X-factor (X_{CO}) in IC 443

+ X-factor: X_{co} ($\equiv N(H_2) / W_{co}$)

 \pm Typical value in the Galaxy: (1–3) \times 10²⁰ cm⁻²/(K km/s)

e.g., see Bolatto+ '13, Table 1

+ Total H column density from τ₃₅₃ Okamoto+ '17

 $I = (9.0 \times 10^{24}) \times \tau_{353}^{1/1.3} (\text{cm}^{-2})$

+ X_{co} in IC 443

- ✓ H_2 column density $N(H_2) = X_{CO} \times W_{CO}$
- ✓ Total H column density $N_{\rm H} = 2 \times N({\rm H}_2) + N({\rm HI})$

$$\rightarrow N_{\rm H} = (2 \times X_{\rm CO}) \times W_{\rm CO} + N({\rm HI})$$

 $X_{\rm CO}$ = Slope/2

= 1.2 × 10²⁰ cm⁻²/(K km/s)

Using points with $W_{CO} > 3\sigma$ in Shell

IC 443: Target Protons and CR Proton Energy

- Good correspondence between molecular cloud and γ-ray peaks
- + Mass: 580 M_{\odot} / Size ~ 4pc
 - $n_{p}: 680 \text{ cm}^{-3}$
- + γ-ray Flux (0.1 100 GeV)
 - $F_{\gamma} = 502.1 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$ Fermi LAT 3rd Source Catalog (Acero+ '15)
- + Total CR Proton Energy
 - $W_{\rm p} \sim 9 \times 10^{47} (n_{\rm p}/680 \text{ cm}^{-3})^{-1} \text{ erg}$

cf. Ackermann+ '13

$$W_{\rm p} \simeq 4 \times 10^{49} \, (n_{\rm p}/20 \, {\rm cm}^{-3})^{-1} \, {\rm erg}$$

Energy Budget for CRs

Efficiency of CR acceleration

- + $W_{\rm p} \simeq 9 \times 10^{47} \, {\rm erg}$
 - ‡ 0.1 % of *E*_{SN}
 - \Leftrightarrow 1 10 % is required
- + NON-uniform proton distribution
 - ‡ γ-rays reflect only a part of total CR protons.

Energy Budget for CRs

Efficiency of CR acceleration

- + $W_{\rm p} \simeq 9 \times 10^{47} \, {\rm erg}$
 - ‡ 0.1 % of *E*_{SN}
 - \Leftrightarrow 1 10 % is required

+ NON-uniform proton distribution

- ‡ γ-rays reflect only a part of total CR protons.
- + Escape of CRs from SNR

	W44	W28	
W _{esc}	(0.3—3) × 10 ⁵⁰ erg	> 2 × 10 ⁴⁹ erg	

W44; Uchiyama+ '12, W28; Hanabata+ '14

- + True $W_{\rm p}$ could archive 1 10 % of $E_{\rm SN}$
- + CR energy of this work provides reasonable lower limit.

Contribution of Molecular and Atomic Proton

- + Analysis of W44, IC443 (, and W28)
 - ‡ Molecular gas is a major target in middle-aged SNRs.
 - ‡ H₂ : HI ~ 10 : 1
- + Young SNRs show different trend:

	RX J1713.7 -3946	RX J0852.0 -4622	HESS J1731 -347	RCW 86
Age (yr)	1,000	1,700	4,000	1,800
<i>M</i> (H ₂): <i>M</i> (HI)	1:1	0.1:1	4:1	0:1

RX J1713.7-3946; *Fukui et al. (2012)*, RX J0852.0-4622; *Fukui (2013)*, *Fukui et al. (2017)* HESS J1731-347; *Fukuda et al. (2014)*, RCW86; *Sano et al. in prep*

- + Is this a universal trend ?, What makes this difference ?
 - ‡ More samples (Age, Type, surrounding)
 - Galactic and also Magellanic SNRs.
 - [‡] MHD simulation of shock propagation into ISM for $t \sim 10^4$ yr

Conclusion

- + W44 and IC443 actually have target protons for hadronic γ–rays.
- + Determined the X_{CO} more accurately for IC 443 using dust data.
- + $W_{\rm p} \simeq 10^{48} 10^{49}$ erg, 0.1 1% of $E_{\rm SN}$
 - Low efficiency can be explained by the <u>non-uniform distribution</u> of the target protons and <u>escape of CRs</u>.
 - γ–ray observation not only toward SNR but also its surroundings is important.
- ⁺ Target protons tend to be dominated by H₂ in Middle-aged SNRs.
 - Increase samples using large-scale Galactic CO survey data:
 - COHRS: JCMT 15m Dempsy+ '13
 - The Mopra Galactic Plane CO Survey: Mopra 22m
 - NASCO: NANTEN2 4m
 - FUGIN: Nobeyama 45m Umemoto+ '17