A Stochastic Acceleration Model of Pulsar Wind Nebulae

Shuta J. Tanaka (Konan Univ.) with Katsuaki Asano (ICRR)

Introduction

PSRs, PWNe & SNRs

powered by pulsars

confined by SNR

к-problem of PWNe

Problem about particle abundance inside PWNe

- Syn. & IC emission of Non-thermal e[±]
- $L_X/L_\gamma =>$ mean B-field of PWNe
- $F_{\text{syn},\nu} \propto B, \nu_{\text{syn}} \propto B\gamma^2 (\downarrow)$
- Lowest γ particles dominate in #.

• Injection from pulsar

 $L_{\rm spin} = I\Omega\dot{\Omega} = \kappa \dot{N}_{\rm GJ}\Gamma_{\rm wind}m_{\rm e}c^2(1+\sigma)$

- # of e[±] inside PWNe ~ $\kappa \dot{N}_{GJ} t_{age}$ for $\kappa \sim 10^6$.
- $\kappa >> 10^5$ is difficult! Timokhin&Harding15

Turbulence in PWNe

<= PWN-SNR interaction

=> PWN-PW interaction

Motivation

most past studies

Broken power-law injection

- Standard acceleration model (e.g., shock accel.) forms single power-law distribution.
- Radio obs. indicate very hard spectrum.
- κ-problem
- PWNe are in turbulent state.

Single power-law injection from central pulsar @ high energy & **external particle injection** + stochastic accel. Tanaka&Asano16 in prep.

10¹⁰

Model

One-zone Model

One-zone approx. from our past studies

$$\frac{4\pi}{3}R^{3}(t)\frac{B^{2}(t)}{8\pi} = \eta_{\rm B}\int_{0}^{t}L_{\rm spin}(t')dt$$

Only the high energy part is supplied from the PSR

Single power-law injection $\gamma_{min} \sim 10^5$, $\gamma_{max} \sim 10^9$

Stochastic Acceleration

$$\frac{\partial}{\partial t}N(\gamma,t) + \frac{\partial}{\partial \gamma} \begin{bmatrix} \left(\frac{\dot{\gamma}_{\text{cool}}(\gamma,t) - \gamma^2 D_{\gamma\gamma}(\gamma,t) \frac{\partial}{\partial \gamma} \frac{1}{\gamma^2}\right) N(\gamma,t) \end{bmatrix}_{\text{from pulsar}} = Q_{\text{PSR}}(\gamma,t) + Q_{\text{ext}}(t)$$
from pulsar Extra
injection
$$D_{\gamma\gamma} = \frac{\gamma_{\min}^2}{2\tau_{\text{accel}}} \left(\frac{\gamma}{\gamma_{\min}}\right)^q \exp\left(-\frac{t}{\tau_{\text{decay}}}\right) \exp\left(-\frac{\gamma}{\gamma_{\text{decay}}}\right)$$

- q: spectrum of turbulence (5/3 vs. 2 in this study)
- t_{accel} : acceleration time normalized at γ_{min}
- γ_{decay}: characteristic length of turbulence
- τ_{decay}: decay time-scale of turbulence

Extra Injection

$$\frac{\partial}{\partial t}N(\gamma,t) + \frac{\partial}{\partial \gamma} \left[\left(\frac{\dot{\gamma}_{\text{cool}}(\gamma,t) - \gamma^2 D_{\gamma\gamma}(\gamma,t) \frac{\partial}{\partial \gamma} \frac{1}{\gamma^2}}{\text{cooling effects}} \right) N(\gamma,t) \right] = Q_{\text{PSR}}(\gamma,t) + Q_{\text{ext}}(t)$$
from pulsar Extra injection

$$Q_{\rm ext}(t) = N_{\rm ini}\delta(t - t_{\rm ini}) + Q_{\rm ej}\left(\frac{t}{t_{\rm age}}\right)^s$$

Results & Conclusion

Simple D_{vv} model

- $\tau_{accel} = t_{age}$
- q = 5/3 (Kolmogorov)

•
$$\tau_{decay} = \gamma_{decay} = \infty$$

•
$$Q_{ej} = 10^{41} \, \text{s}^{-1}$$

Alternative Models

- $\tau_{decay} = 300 \text{yr} < t_{age}$
- $\tau_{accel} = 50yr \ll t_{age}$
- q = 2 (hard-sphere)
- $\gamma_{\text{decay}} = 10^5 \sim \gamma_{\text{min}}$

•
$$N_{ini} = 2 \times 10^{51}$$

$D_{\gamma\gamma}$ is not simple.

Both N_{ini} & Q_{ej} models are allowed.

Both q = 5/3 & 2models are allowed.

Conclusions

• $N_{ini} \& Q_{ej}$ should be tuned to fit the radio flux level.

$$n_{\rm inj} = \frac{Q_{\rm ej}}{Sv_{\rm inj}} \sim 10^{-4} {\rm cc}^{-1} Q_{\rm ej,41} S_{\rm pc}^{-1} v_{\rm inj,8}^{-1}$$

- Simple $D_{\gamma\gamma}$ model does not fit to observed flux evolution. (The turbulence should have decayed already.)
- Finite values of γ_{decay} & τ_{decay} reproduce flux evolution.
- Flux evolution observations divide the models.

Model	0.1TeV	TeV	10TeV	100TeV
Simple $D_{\gamma\gamma}$ (%/yr)	+0.092	+0.15	+0.18	+0.21
Alternative (%/yr)	-0.12	-0.056	+0.042	+0.097

We've already observed the Crab Nebula far more than 10yrs in TeVs.

Simple D_{vv} model

