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1 Outline of the talk

Introduction: particle acceleration
In supernova remnants
- SNRs as Cosmic Ray accelerators

Catalogue of high-energy observations
- rationale and objectives
- demo and statistics

3D numerical simulations
- hydro+kinetic code
- thermal and non-thermal emission



SNRs as a key link between stars and the ISM

enrichment in heavy elements
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Supernova Remnants as sources of Cosmic Rays

energy spectrum acceleration by shock waves
of cosmic radiation in supernova remnants
(as observed on the Earth)
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SNR broad-band emission
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review for CR evidence: Helder et al 2012



HE catalogue of Galactic SNRs: motivation

e Focus on high-energies (X, gamma)

Dave Green'’s catalogue: identification and typing from radio emission
SNRcat: particle acceleration from broadband X-ray and y-ray emission

e Provide a unified view of SNRs

Some observatories offer dedicated resources
SNRcat: all observations from major relevant observatories presented together

Some other websites present all observations in a specific energy domain
SNRcat: complete and broad-band view of all Galactic SNRs

e Be up-to-date

Green’s catalogue: last updated in 2014 (294 SNRs, added 87)
SNRcat: weekly/daily updates, to keep pace with the surge in X-ray/y-ray obs

e Be easy to manipulate
SNRcat: stored in a relational database (sorting, filtering, searching,...)

Ferrand & Safi-Harb 2012 (ASR 49 9)

www.physics.umanitoba.ca/snr/SNRcat



http://www.physics.umanitoba.ca/snr/SNRcat

HE catalogue of Galactic SNRs: statistics

e 381 records of a supernova remnant (SNR)

. 108 contain a neutron star (NS) or candidate, 108 identified as a pulsar (PSR)
. 6 anomalous pulsars (AXPs) + 5 soft y-ray repeaters (SGRs) + 2 high-B PSRs
= 13 magnetars candidates

. 15 central compact objects (CCOs) or candidates

. pulsar wind nebula (PWN) detected or suggested in 106 cases (not a subset of
the SNRs hosting a NS: only 83 SNRs are associated with both)

. interaction of the shell with a molecular cloud (MC) reported in 70 cases

e 14 records of the sighting of a supernova (SN)

referred to by 14 SNRs records
(non-bijective: some SN have multiple candidates, others have none)

e 1633 records of high-energy observations made with 40 observatories

NB: 425 of these are actually non-detections
NB: the emission might not be coming from the SNR itself

e 2235 references as ADS bibcodes plus 100s of other URLs

OMISSIONS? IDEAS? YOUR FEEDBACK IS WELCOME! )



HE catalogue of Galactic SNRs: worldwide usage
www.physics.umanitoba.ca/snr/SNRcat
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first 2 years statistics (2012/02 — 2014/01)

> 60,000 accesses from > 5,000 unique IPs
(98% of IP addresses can be localized at country level)


http://www.physics.umanitoba.ca/snr/SNRcat

HE catalogue of Galactic SNRs: extensions

Database completeness

e Instruments coverage: to be updated reqularly following new results, in
particular from instruments having started operations (H.E.S.S. II, NuSTAR,
ASTROSAT), satellites about to be launched (eROSITA), as well as planned
next-generation observatories (Hitomi recovery mission, CTA)

e Wavelength coverage: eventually get a full multi-wavelength view of all
SNRs, covering all regions of the electromagnetic spectrum (IR, optical, UV)

e Objects coverage: can be extended to nearby LMC and SMC

User interface
e maps: add an interactive map of the Galaxy
e Images: add images in radio and X-rays (maybe y-rays)

Samar Safi-Harb
U. of Manitoba



Galactic SNRs in radio

montage courtesy
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SNRs at TeV: from HESS...

G266.2-01.2 = RX G315.4-02.3 = RCW 86  G327.6+14.6 = SN 100
J0852.0-4622 =VelaJr  (2009) _(2010)
(2005) - :

:_G347'3'01 .0 N "SNR candid te
- (2015)  snrG323.7-1.0 . (2015)
i ™™ .\ : i :

[ HESS |1912+101
Puhlhofer et al 2015 (arXiv:1509.03872P)
Gottschall et al 2016 (arXiv:1612.00261)

H.E.S.S. J1731-347
G353.6-00.7
(2011)

discovered
In y-rays!

H.E.S.S. Coll.
2008, 2011

a new way of
detecting and
studying SNRs

The H.E.S.S. experiment has imaged several TeV shell SNRs in the last decade.
A breakthrough for ground-based astronomy, although still a small sample.



SNRs at TeV: ...to CTA

The CTA observatory will be able to

v detect 20-70 SNRs (most of the TeV shells currently shining in the Galaxy)
v resolve 7-15 SNRs (depends on their distance...)

Note: identification will still require MWL studies

T T T T T 1.0. T T | — ""_-‘ 1.0. T A
— ’ B D l . - o o"\ [ B D I A AY
0 v’ w AY
< , < .
Vv ¥ Vv .
< / < v
N N .
;; ) ,’ o '."
< p shells § PWNs
w o
5 f{ ® O Vela Jr 5 ® G21.5-0.9
§ 4 vV RCW 86 S o1 v HESS J1356-645
g 01f ¢ an RXJ1713 ] B A Kes 75
- ' s
5 10 15 20 5 10 15 20
distance (kpc) distance (kpc)

horizons of detectability (filled symbols) and resolvability (open
symbols) for different possible configurations of the array

simulations by Renaud 2011, also in Acero et al 2013



& 2 orthogonal approaches for SNR studies

— derive statistically significant trends in the Galaxy
do a global modeling of all Galactic SNRs, by doing simpler broad-band spectral fittings

do a detailed modeling of select SNRs, by running realistic 3D numerical simulations
— study in details the physics of particle acceleration



shock wave cosmic-rays

injection, acceleration
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Numerical simulations: hydro + Kinetic

slice of log(density)

from cosmology to supernova remnants 5
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O-K band

emissivity [erg/s/cm3/eV]
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Thermal emission from the hot plasma
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Non-thermal emission from the particles
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17 Thermal + non-thermal emission in X-rays

simulations observations

Energetic protons,
accelerated at the
shock front, don't
radiate as efficiently
as electrons, however:

test-particle case

1/ they impact the
dynamics of the shock
wave, and therefore
the thermal
emission from the
shell (optical, X-rays)

2/ they impact the
evolution of the
magnetic field,

and therefore the
non-thermal
emission from the
electrons (radio — X-

rays — y-rays)

modified shock
with magnetic field amplification




Non-thermal emission: maps at TeV energies

assuming efficient inverse Compton pion decay
acceleration and MFA % <7° UToN =0 I -
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Observational perspectives with CTA

Fermi SNRs: mostly middle-aged remnants interacting with molecular clouds
H.E.S.S. SNRs: still difficult to disentangle hadronic and leptonic contributions

— we want to (finally) find the “PeVatrons”!

see the spectrum cut-off

see the shell morphology

v’ wide energy range
from 20 GeV to 300 TeV
v with sensitivity x10 @ 1 TeV

v angular resolution = 1’

above 1 TeV
v large field of view >5-8°
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hard hadronic component

(a) CTA lepton-dominated case (A2/A1=0.01)
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CTA can distinguish between hadronic and

leptonic emission

upcoming CTA Collaboration paper on RX J1713.7-3946
Nakamori, Katagiri, Sano, Yamazaki, Ohira,



Modelling perspectives: the shock in context

e impact of the progenitor : ‘ ejecta profiles (stratification, asymmetries)
stellar wind (for core-collapse)

e impact of the environment : ‘ molecular clouds (radiative? ionized?)
ISM turbulence (hydro + mag)

shock wave

progenitor’s wind

accelerated
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Shigehiro Nagataki [
Astrophysical Big Bang Laboratory Eee4
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