Gamma Rays From Nebulae Associated with Microquasars and Ultra-Luminous X-ray Sources

Yoshiyuki Inoue (ISAS/JAXA)

Shiu-Hang (Herman) Lee (ISAS -> Kyoto), Yasuyuki T. Tanaka (Hiroshima), Shogo B. Kobayashi (Tokyo)

CTA-Japan Meeting @ Kashiwa, 2016-12-15

Current View of VHE Gamma-Ray Sky

- ~180 very high energy (VHE; >50 GeV) objects by imaging atmospheric Cherenkov telescopes (IACTs; see TeVCat)
- CTA will discover new cosmic-ray accelerators.

Microquasars and ULXs in Extragalactic Sky

- Microquasars and ultra-luminous X-ray sources (ULXs) are
 - X-ray binary systems
 - Black hole mass is still under debate (intermediate or stellar)... or powered by pulsars (Bachetti+'14)
 - kinetic/radiative power >10³⁹⁻⁴⁰ erg/s (Mirabel & Rodriguez '99, Feng & Soria '11)
 - associated with star-forming regions (e.g. Swartz+'09, Poutanen+'13)

Micro-quasars and ULXs Bubbles

- Some microquasars and ULXs associate with expanding bubbles.
 - R_b~200 pc
 - v_s ~ 80-250 km/s

Expanding Power of Bubbles

 Self-similar expansion law gives (Weaver+'77; Kaiser & Alexander '97)

 $R_b \approx 0.76 (P_{\rm kin}/\mu m_p n_{\rm gas})^{1/5} t^{3/5}$

• The characteristic age:

$$\tau = 3R_b/5v_s \sim 4.9 \times 10^4 R_{b,20.8} v_{s,7.1}^{-1} \text{ yr}$$

• The time-average kinetic power of the bubble:

 $P_{\rm kin} \approx 18 \mu m_p n_{\rm gas} R_b^2 v_s^3 \sim 3.6 \times 10^{40} R_{b,20.8}^2 v_{s,7.1}^3 n_{\rm gas,0.5} \ {\rm erg \ s^{-1}}$ 10⁴⁰ erg/s power is available.

Shock Condition

- Downstream temperature $T_d \sim 2.0 \times 10^5 v_{s,7.1}^2 \text{ K}$
- Radiative cooling time scale (Draine '11) $t_{\rm rad} \sim 1.4 \times 10^3 n_{{
 m gas},0.5}^{-1} v_{s,7.1}^{17/5} {
 m yr}$

➡Radiative shock

- **Ionized fraction strongly depends on the shock velocity** (Shull & McKee '79; Hollenbach & McKee '89, Lee+'15)
- Ion-neutral collisions will hamper particle acc.

 $E_{\rm cr,br} \sim 1.9 \ T_{u,4}^{-0.4} B_{u,-6}^2 (1 - f_{\rm ion})^{-1} f_{\rm ion}^{-1/2} n_{\rm gas,0.5}^{-3/2} \ {\rm GeV}$

Gamma-ray production

The maximum cosmic-ray energy

 $E_{\rm cr,max} \sim 1.3 \times 10^2 \eta_0 n_{\rm gas,0.5}^{1/2} v_{s,7.1} R_{\rm b,20.8} \text{ TeV}$

- ULXs are known to be associated with star forming regions (Swartz+'09)
 - $n_{gas} \sim 1-10 \text{ cm}^{-3}$ (Hunt & Hirashita '09)
- Hadronuclear interaction efficiency

$$f_{\rm pp} \sim 0.28 R_{\rm b,20.8} v_{s,7.1}^{-1} n_{\rm gas,0.5}$$

Expected Gamma-ray Spectra

- Assuming 10% of kinetic energy goes into particle acc.
- Microquasar nebula S26 would be a good target for CTA

Emission in Galaxies

- Host galaxy of S26 would have comparable gamma-ray flux for $n_{gas} = 1 \text{ cm}^{-3}$
- S26 is ~3' away from the nucleus

Cosmic Gamma-ray Background Radiation

- Blazars (YI & Totani'09; Ajello, YI+'15), Radio galaxies (YI'11), Starburst galaxies (Ackermann+'12)
 - 60-70 % of the cosmic gamma-ray background is not resolved yet (Ackermann+'14).
- ULX bubbles would contribute to ~7 % of the unresolved background flux.

Neutrino Production?

- A factor of ~10 sensitive neutrino detectors will be able to see the object.
 - But, contamination of host galaxies would be significant.

Summary

- Microquasar/ULX bubbles are efficient cosmic-ray accelerators.
 - Especially, the bubbles of S26 will a good target for future CTA observations.
 - Host galaxy contamination can be removed by CTA's angular resolution.
 - These bubbles would make up ~7% of the unresolved gamma-ray background.
 - ULX workshop @ ISAS, 2017/3/6-7

Evidence of ULX Jets?

- ULX jets are not established yet.
- Possible synchrotron self-absorption (SSA) feature is discovered for Hol IX X-1 (Dudik+'16).
- or, circumbinary disk?

MWL Spectrum of Hol IX X-1 from Jet

- Assuming SSA, B ~ 3.4 x 10^4 G & R_b ~ 1.6 x 10^9 cm
 - Similar to Galactic X-ray binaries (e.g. Tanaka, YI+'16 for V404 Cyg)
- location $r > 2 R_b$
 - ~1000 r_s for 10 M_{sun}
 - $\bullet \ 10 \ r_s \ for \ 1000 \ M_{sun}$

• A simple power-law ($\gamma \sim 1.6$) + cutoff (10^{40} erg/s)

- Various studies are consistent (e.g. Grimm+'03, Swartz+'11, Walton+'11, Mineo+'12).
- Swartz+'11 provides a ULX LF from a complete sample in the volume of 6100 Mpc³.
- By setting Eddington ratio, we can convert ULX LF to ULX BH mass function.

ULX Lifetime

- Binary models predict X-ray activity time scale t_{ULX}~0.1 Myr for high mass X-ray binary systems (Mineo+'12).
- ULXs are known to be associated
 with stellar clusters (Grisé+'11, Poutanen+'13)
 - the age of those clusters are <~5
 Myr (Grisé+'11, Poutanen+'13)

Binary BH Merger Rates inferred from ULXs

- We can estimate the expected merger rate, if all binary black holes evolves through X-ray emitting phases.
 - The expected rate is coincident with the measured merger rate.

$$\dot{\rho}(M_{\rm BH};\lambda) \approx M_{\rm BH} \frac{dn}{dM_{\rm BH}} \frac{f_{\rm HMXB} f_{\rm ratio}}{t_{\rm ULX}}$$
$$\simeq 50 \left(\frac{\lambda M_{\rm BH}}{M_{\odot}}\right)^{-0.6} \exp\left(-\frac{\lambda M_{\rm BH}}{1.2 \times 10^2 M_{\odot}}\right) \left(\frac{t_{\rm ULX}}{0.1 \text{ Myr}}\right)^{-1} \left(\frac{f_{\rm HMXB}}{0.6}\right) \left(\frac{f_{\rm ratio}}{0.2}\right) \ [\rm Gpc^{-3} \ yr^{-1}]$$