ref) Takamoto+(2015), MNRAS 454, 2972.

Explosive Reconnection of the Double Tearing Mode in Poynting-Dominated Plasmas

Makoto Takamoto

Department of Earth and Planetary Science The University of Tokyo

collaborators: Jérôme Pétri Hubert Baty (Université de Strasbourg, France)

1. Introduction

2. Double Tearing Mode

3. Spectrum Evolution

ref) Baty+(2013), MNRAS, 436, L20. Petri+(2015), PPCF, 57, 014034. Takamoto+(2015), MNRAS 454, 2972.

I.I. Flares from High-Energy Astrophysical Phenomena

I.2. Energy Conversion Processes

1. Relativistic Shock

Pros: $k_BT/mc^2 \sim \Gamma/3\sqrt{2} >> 1$ (if unmagnetized)

Cons: Magnetic field should be weak inefficient particle accelerator in most cases? (large escaping probability)

> ref) Hoshino (2008), ApJ, 672, 940. Giacche & Kirk (2016), arXiv:1612.04282

2. Magnetic Reconnection

Pros: Rapid conversion of Magnetic Field (~10L/c_A) $\gamma mc^2 \sim F(\sigma)$ (increasing with σ)

Cons: current sheets are necessary very local heating?

1.3 I-sheet Reconnection (Plasmoid-Chain)

ref) MT (2013), ApJ 775, 50.

Can magnetic reconnection explain very strong bursts?

1. Introduction

2. Double Tearing Mode

3. Spectrum Evolution

ref) Baty+(2013), MNRAS, 436, L20. Petri+(2015), PPCF, 57, 014034. Takamoto+(2015), MNRAS 454, 2972.

2.1. Single Tearing Mode

2.2. Double Tearing Mode

2.3. Double Tearing Mode 2

ref) Baty+(2013), MNRAS, 436, L20. Petri+(2015), PPCF, 57, 014034. Takamoto+ (2015), MNRAS, 454, 2972.

2.4. Double Tearing Mode 3

2.6. DTM Burst Timescale

 $t = 2300 \text{ l/c}, \log_{10} (\text{k}_{\text{B}} \text{ T/mc}^2)$

1. Introduction

2. Double Tearing Mode

3. Spectrum Evolution

ref) Baty+(2013), MNRAS, 436, L20. Petri+(2015), PPCF, 57, 014034. Takamoto+(2015), MNRAS 454, 2972.

3.1. Thermal Synchrotron Spectrum

$$\epsilon_{\text{sync}} = \frac{3}{2} \gamma^2 \frac{B}{B_q} mc^2,$$

$$\star \text{Lorentz transform (}\Gamma_{\text{bulk}}),$$

$$\star \gamma - 3 \text{ k}_{\text{B}}\text{T/mc}^2,$$

$$\star \nu - 3 \text{ k}_{\text{B}}\text{T/mc}^2,$$

$$\star - 3 \text{ k}_{\text{B}}\text{T/mc}$$

3.2. Applications for Crab GeV Flare

 $\varepsilon_{sync,L} \sim 300[MeV]$ (when $\sigma \sim 10^5$, r~50r_L, B~0.1B₀)

3.3. Temporal Evolution of Photon Spectrum

(when $\sigma \sim 120$, $r \sim 50r_L$, $B \sim 0.1B_0$)

3.4. Time Scale

Sheet width:

if **MHD** (density is sufficiently high)

basically no criterion

(~ $\sqrt{(\eta/\Delta t)}$ if highly collisional)

if collisionless plasma (low density)

sheet width ~ min{Gyro radius, skin depth}

(maximum energy will be limited by synchrotron cooling)

3.5. Scenario

ref) Takamoto+(2015), MNRAS 454, 2972.

Summary

- We investigated a candidate of the strong flare origin considering **Double Tearing Mode (DTM)**.
- Double tearing mode (DTM) is a plasma instability resulting in a sudden energy release.
- The thermal synchrotron obtained by the simulations gives an energy spectrum resembling to the observations.
- The high Lorentz factor of the wind allows us to explain energy flux naturally.

O Ma Ke

I.4 I-sheet Reconnection (Turbulent Reconnection)

ref) MT+, (2015), ApJ 815, 16.

I.5. Crab Flares I

Strong time variability in gamma-ray (~100MeV)!!

I.7. Theoretical Models and Difficulties I

ref) Guilbert+(1983), MNRAS,205 Uzdensky+(2011), ApJL, 737

<u>Assumption:</u> in MHD plasma ($B^2 > E^2$)

$$\tau_{\rm syn} \propto (\gamma B^2)^{-1}$$

$$\tau_B \propto (\gamma/B).$$
 $(\gamma^2 B)_{\rm Max} = {\rm const.},$

$$\epsilon_{\rm sync} = \frac{3}{2} \gamma^2 \frac{B}{B_q} mc^2 \propto \gamma^2 B$$

I.8. Theoretical Models and Difficulties 2

observed duration of the flares:

if pulsar origin: P~33[ms] << T_{flare}

if PWN origin : $1[pc]/c \sim 1yr >> T_{flare}$

3.2. Radiation Energy Flux & Duration

I.9. Reconnection in PWN

ref) Uzdensky+(2011),ApJL,737 Cerutti+(2013),ApJ Cerutti+(2014),ApJ,782

<u>Condition:</u> a very long and coherent sheet very weak perturbation on particles weak guide field

Necessary Conditions of DTM

Observed Sheet-Thickness in Wind

3.3. Cut-off energy and Constraints on Crab Parameters

maximum energy:

DTM dynamical time ~ radiation cooling time

$$\frac{\bar{\tau}_{\rm sync}}{\bar{\tau}_{\rm dyn}} = 9.4 \times 10^5 \left(\frac{\Gamma_{\rm W}}{300}\right) \Theta^{-1} \left(\frac{\bar{B}}{0.05\bar{B}_0}\right)^{-2} \left(\frac{r}{50r_{\rm L}}\right)^2 \\ \times \left(\frac{\bar{B}_{\rm L}}{100[{\rm T}]}\right)^{-2} \left(\frac{l/2\pi r_{\rm L}}{0.05}\right)^{-1} \left(\frac{P}{33[{\rm ms}]}\right)^{-1}.$$

$$\epsilon_{\rm sync,L} \sim 311 [{\rm MeV}] \left(\frac{\Theta}{10^6}\right)^2 \left(\frac{r}{50r_{\rm L}}\right)^{-1} \left(\frac{\bar{B}}{0.05\bar{B}_0}\right) \left(\frac{B_L}{100[{\rm T}]}\right)$$

DTM in Blazar

