

WITH

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS

TAM, Pak Hin (Sun Yat-sen University/ICRR)

CTA

GAMMA-RAY BURST OBSERVATIONS WITH CTA

LESSONS LEARNT FROM FERMI/LAT

TAM, Pak Hin (Sun Yat-sen University/ICRR, U Tokyo)

Kashiwanoha, ICRR 15/12/2016

What are GRBs?

- * Intense bursts of gamma-rays
- * Duration: -10ms hundreds of seconds
- * happen at a random position on the sky never repeat

Burst spectra: "Band" function

* Most GRB spectra can be fit by the Band (1993) function

$$N_{E}(E) = A \left(\frac{E}{100 \text{ keV}}\right)^{\alpha} \exp\left(-\frac{E}{E_{0}}\right),$$

$$(\alpha - \beta)E_{0} \ge E,$$

$$= A \left[\frac{(\alpha - \beta)E_{0}}{100 \text{ keV}}\right]^{\alpha - \beta} \exp\left(\beta - \alpha\right) \left(\frac{E}{100 \text{ keV}}\right)^{\beta},$$

$$(\alpha - \beta)E_{0} \le E,$$

* which is a phenomenological function without being motivated by any theory.

synchrotron spectrum

Decays connected by PLs, from optical, X-rays to GeV, GRB 090510

XRT afterglow light curves

A "canonical" X-ray decay light curve without flares

Strong late-time activities, thought to be central engine

X-ray flares can be IC up-scattered to very high energy gamma-rays

The Fireball Model

Prompt emission (short-lived, seconds)

Afterglow emission (long-lasting, up to days to weeks)

c.f. Piran (2004)

(see, e.g., Ackermann et al., 2012)

GRB 080916C

MWL/GeV photons during GRB afterglow

GRB 090510

GRB 090926A

Abdo et al. (2010)

LAT (Fermi): 100 MeV-100 GeV **CTA: >10 GeV**

Fermi vs ground-based tels

- * Fermi-LAT is able to, and did see photons above 10 GeV, most notably a 27.4 GeV photon from GRB 080916C (at z=4.35, it is a 147 GeV one at origin), and a 95 GeV photon from GRB 130427A
- * As time passes, Fermi-LAT will see more of them, but will find it hard to obtain good photon number statistics for spectral and light curve construction.
- * Ground-based gamma-ray detectors have much larger effective collection area.

Fermi-CTA sensitivity

Very bright GRB 130427A

GRB 130427A emits many high-energy gamma-rays during the prompt & afterglow period, T₉₀-138s

a 95 GeV photon arrived at To + 243s, corresponding to an intrinsic photon energy 128 GeV at z=0.34 Fan, Tam et al. (2013)

Ackermann et al. (2014)

Spectral evolution

$t - T_0$ (sec)	Power Law (PL) Γ	$\Gamma_1 \ (E < E_{\rm b})$	Broken Power Law (BPL) $\Gamma_2 \ (E > E_b)$	$E_{\rm b}~({\rm GeV})$	Improvement of BPL over PL^a (σ)
$\begin{array}{r} 0 - 20 \\ 20 - 138 \\ 138 - 750 \\ 3000 - 80,000 \\ 138 - 80,000 \end{array}$	$\begin{array}{r} -2.0{\pm}0.2\\ -1.9{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\end{array}$	$^{-2.2\pm0.1}_{-2.6\pm0.7}_{-2.3\pm0.2}$	 -1.4 ± 0.2 -1.4 ± 0.2 -1.4 ± 0.1	$4.3{\pm}2.0$ $1.1{\pm}0.9$ $2.5{\pm}1.1$	 2.5 2.9 3.5
^a calculated as $\sqrt{2 \times [\log(\mathcal{L}_{\mathrm{BPL}}) - \log(\mathcal{L}_{\mathrm{PL}})]}$					ance of broken power la

Tam et al. (2013)

Power law index doesn't change!

over power law

>10 GeV afterglow emission mechanism

- * Synchrotron emission (e.g., Kumar & Barniol 2009, Ghisellini et al. 2010)
- * but there exists a maximum synchrotron energy, it is hard to explain the >10 GeV photons

$$\begin{split} \epsilon_{\rm syn,M} &\sim 100 \ {\rm MeV} \ \Gamma(1+z)^{-1} \\ &\sim \begin{cases} 20 \ {\rm GeV} \ E_{\rm k,54}^{1/8} n_{-2}^{-1/8} t_2^{-3/8} (\frac{1+z}{1.34})^{-5/8}, {\rm ISM}; \\ 15 \ {\rm GeV} \ E_{\rm k,54}^{1/4} A_{*,-2}^{-1/4} t_2^{-1/4} (\frac{1+z}{1.34})^{1/4}, \ {\rm wind}; \end{cases} \end{split}$$

Fan, Tam, et al. (2013) also see Ackermann et al. (2013)

Contemporaneous X-ray/ GeV flares?

GRB 100728A: LAT detection during X-ray flares

Power-law component during prompt phase

10

10-5

104

10

104

101

104

10

10²

10

10³

10⁴ Energy (keV)

Ackermann, et al. 2010

vF_v (erg/cm²/s)

vF_v (erg/cm²/s)

(a)

GRB 090902B

GRB 090510

Time-integrated photon spectrum (0.5 s - 1.0 s)

Abdo et al. (2009)

-10 sec after trigger

-1 sec after trigger

105

0.6 s: Band (8

10⁶

107

10 GeV

GRB 131231A: showing very hard 0.1-100 GeV spectrum since T_0

Probably the strongest case for IC emission, besides 130427A

Why bother the very highenergy photons of GRBs?

* 10-100 GeV is the last observing window of GRBs

- * The radiation mechanism at >GeV energies, both in prompt or afterglow phase, is still under debate
- * The energy band where extragalactic background light (EBL) attenuation starts to modify the intrinsic spectra of the sources (e.g., AGN, GRBs)
- * GRBs are more distant than AGNs, but a few nearby GRBs will be good ..

Extragalactic background Light

γ - γ interaction high-energy photons will suffer absorption by EBL

 $\gamma = \left(\begin{array}{c} \gamma \\ \theta \\ \gamma \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \theta \\ \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \end{array} \right) \left(\begin{array}{c} \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \end{array} \right) \left(\begin{array}{c} \theta \end{array} \right) \left(\begin{array}{c} \theta \\ \end{array} \right) \left(\begin{array}{c} \theta \end{array} \right) \left(\left(\begin{array}{c} \theta \end{array} \right) \left(\left(\begin{array}{c} \theta \end{array}$

$$F_{\text{obs}}(E) = F_{\text{int}}(E) \cdot e^{-\tau(E)}$$

early redshift information crucial ! Detection --> UL of z

Aharonian et al. (HESS), Nature, 2006

Historical observations of GRBs

- * Over the last twenty years or so, ground-based telescopes have not detected GRBs at significantly high confidence
- * Some early claims: GRB 970417A by MILAGRITO (2.7σ) , GRB 991208 by Tibet-ASγ (1.88σ, z=0.706) steep fall-off of optical flash like GRB 990123 was also seen
- * Not even MAGIC II/H.E.S.S. II/VERITAS/HAWC (yet)
- * Some evidence for Tupi detected photo-muons associated with several GRBs (Augusto et al. 2016)
- * High energy threshold (thus absorbed by the EBL) is a major reason, other reasons include low sensitivity, time delay, etc. (see, e.g., Xue, Tam, et al., 2009).

HAWC is observing GRBs

- * With less than 1/3 of the array active, the HAWC observatory obtained limits for GRB 130702A, which is at a close redshift of z = 0.145, and a limit for GRB 130427A
- * Simulated HAWC light curve of GRB 090510

CTA simulation

Inoue et al. (2013)

FAST RADIO BURSTS & CTA THE LOW & THE HIGH

TAM, Pak Hin (Sun Yat-sen University/ICRR)

Kashiwanoha, ICRR 15/12/2016

Fast Radio Bursts

- * Discovered in 2007 (Lorimer et al.)
- * ms-duration
- * Large dispersion measure (DM), about to times the Milky Way contribution

Lorime+ (2007)

Fast Radio Bursts

- * Some or all excess DM may come from IGM Sources outside the Galaxy. Are they cosmological?
- * Rate ~ 5,000 sky⁻¹ day⁻¹
- * Without EM signals in other wavelengths, our current knowledge of FRBs are pretty much like that of GRBs in the 1980s
- * Many models proposed: some more discussed ones are: magnetar flares, neutron star collapse, binary mergers. Number of models > number of FRBs!

Recent developments (2016)

- * A possibly fading radio afterglow & host galaxy (Keane+ 2016) of FRB 150418; this might be an AGN-like activity, though (Williams & Berger 2016)
- * the first repeating FRB 121102 (Spitler+ 2016)
- * No counterpart in any other wavelengths (Scholz+ 2016)

FRB 131104/ SwJ0644.5-5111

Table 2. Properties of FRB 131104				
Joint	R.A.	$06^{\rm h} 44^{\rm m} 27.06^{\circ}$		
	Dec.	$-51^{\circ} 12' 54''_{}0$		
	r_{90}	5.'78		
Radio	UTC	18:03:59		
	$S_{ m GHz}$	2.33 Jy ms		
	DM	$779 \pm 1 { m pc} { m cm}^{-3}$		
	$z_{ m max}$	0.55		
γ -ray	T_{90}	$377 \pm 24 \mathrm{s} (1\sigma)$		
		>100 s (90%-c.l.)		
PL	Г	$1.16\substack{+0.68\\-0.78}$		
	$S_{\gamma,-6}$	4.0 ± 1.8		
TB	kT	$200^{+\infty}_{-125} \mathrm{keV}$		
	$S_{\gamma,-6}$	3.4 ± 1.5		

Significance of association-3.2 sigma

DeLaunay+ (2016)

TeV observation of FRB150418

* Observations started 14.5 hr after the FRB, lasting for 1.1 hr

* No detection

CTA prospects?

- * Prompt follow-up observations need coordination with radio facilities
- * Pointed observations of repeating FRBs?
- * Compared to GRBs, FRBs are more nearby, reducing the effect of EBL.
- * Gamma-rays are less absorbed by FRB local environment
- * Crucial: whether FRBs emit gamma-rays (or any counterpart at all) is an open question

Summary

* **GRBS**: 10-100 GeV is probably the last observing window which is still missing (*apart from a few photons seen by Fermi/LAT*). It contains important clues on GRBs, EBL and related astrophysics.

* Fast Radio Bursts: origin unknown, but they are energetic and probably related to compact objects (see also talk by T. Totani tomorrow)