Electromagnetic **Counterparts to Neutron Star Binary Mergers** Shota Kisaka (Aoyama Gakuin Univ.)

Collaborators : Kunihito Ioka, Takashi Nakamura, Ehud Nakar, Takanori Sakamoto

**Merger of Neutron Star Binaries EM counterparts to GW sources are** important to maximize scientific returns from the detection of GWs. Metzger & Berger 12 Jet-ISM Shock (Afterglow) e.g., Localization Optical (hours-days) Radio (weeks-years) Origin of short GRBs Ejecta-ISM Shock Radio (years) Equation of state  $\theta_{obs}$ GRB •*r*-process enrichment  $(t \sim 0.1 - 1 s)$ Kilonova Optical (t ~ 1 day) NS θ. Merger Ejecta Tidal Tail & Disk Wind BH NS v ~ 0.1–0.3 c BH NS NS binary



# **Energy Sources**

• Rotation energy:

$$\sim 10^{53} \left( \frac{M_{\rm BH}}{3M_{\odot}} \right) \, {\rm erg} \, (a/M_{\rm BH} = 0.5)$$

• Disk gravitational energy:  $\sim 10^{52} \left( \frac{M_{\rm d}}{M_{\rm d}} \right)$  erg

$$\left(10^{-1}M_{\odot}\right)^{\text{crg}}$$

Ejecta kinetic energy:

$$\sim 10^{51} \left( \frac{M_{\rm ej}}{10^{-2} M_{\odot}} \right) \left( \frac{v_{\rm ej}}{0.3c} \right)^2$$
 erg

• Radioactivity:

$$\sim 10^{49} \left(\frac{\epsilon}{10^{-3}}\right) \left(\frac{M_{\rm ej}}{10^{-2}M_{\odot}}\right) \ {\rm erg}$$

• <u>Magnetic field:</u>  $\sim 10^{48} \left(\frac{B}{10^{15} \text{G}}\right)^2 \text{ erg}$ 



Metzger & Berger 12

# **EM Counterparts**

#### Gamma-ray Bursts

t < 10<sup>6</sup> s Rotation/disk grav. energies

#### Macronovae/Kilonovae

t ~ 10 day Radioactivity (?)

#### Remnants of Merger Ejecta

t ~ yr Ejecta kinetic energy



# Gamma-Ray

Bursts

Extended emission :  $L \sim 10^{48}$  erg/s,  $T \sim 10^2$  s Plateau emission :  $L \sim 10^{45}$  erg/s,  $T \sim 10^4$  s



cf. Prompt emission  $L \sim 10^{50} - 10^{51} \text{ erg/s}$  $T \sim 0.1 - 1 \text{ s}$ 

Total energy is comparable  $\sim 10^{50}$  -  $10^{51}$  erg

NS scenario (Gompertz+ 13) (Propeller → wind) BH scenario (SK & loka 15) (BZ jet + B-field evolution)



Model : SK & loka 15













### **Luminosity and Duration**

Extended emission :  $L \sim 10^{47}-10^{50}$  erg/s,  $T \sim 10^2 - 10^3$  s Plateau emission :  $L \sim 10^{43}-10^{47}$  erg/s,  $T \sim 10^4 - 10^5$  s



# Scattering

- Emission region locates inside the ejecta,  $r_e < r$ .
- Optical depth  $\tau >> 1$ .



$$\tau \sim 10^2 \left(\frac{t}{10^4 \text{s}}\right)^{-2} \left(\frac{\bar{A}}{10^2}\right)^{-1} \left(\frac{M_{\text{ej}}}{10^{-2} M_{\odot}}\right) \left(\frac{v}{0.1c}\right)^{-2}$$



# Macronovae

### Macronova Candidate







## **r**-process Heating Model





### X-ray-powered Macronova The merger ejecta heated by the irradiation of X-ray emit thermal infrared radiation.



#### **Physical setups**

- Isotropic X-rays are generated near the central source.
  - •The ejecta cover a fraction of solid angle.
  - The line-of-sight to the source is clean for the observers.

X-ray-powered Macronova The merger ejecta heated by the irradiation of X-ray emit thermal infrared radiation.



#### **Required conditions**

- Absorption of X-ray photons  $\tau_X > 1$
- Thermalization  $\tau_{IR} > 1$
- Escaping thermal photons
  t<sub>diff</sub> < t</li>
- Temperature T < T<sub>max</sub>

### Results

#### **Broad ranges of the allowed parameter regions**



# Remnants of Merger Ejecta

# **Ejecta-ISM Shock**





Cassam-Chenai+08

#### **Free expansion** → **Sedov-Taylor phase**

$$R_{\rm dec} = \left(\frac{3M_{\rm ej}}{4\pi nm_{\rm p}}\right)^{1/3} \sim 7 \times 10^{18} \left(\frac{M_{\rm ej}}{10^{-2}M_{\odot}}\right)^{1/3} {\rm cm}$$
$$t_{\rm dec} = \frac{R_{\rm dec}}{\beta_{\rm ej}} \sim 7 \left(\frac{M_{\rm ej}}{10^{-2}M_{\odot}}\right)^{1/3} \left(\frac{\beta_{\rm ej}}{0.9}\right)^{-1} {\rm yr} \qquad n = 10^{-2} {\rm cm}^{-3}$$

# **High Energy Radiation**



#### **Maximally allowed bolometric flux**

$$F_{\rm max} = \frac{\epsilon_{\rm e} E_{\rm kin}}{4\pi d^2 t_{\rm dec}} \sim 2 \times 10^{-12} \left(\frac{M_{\rm ej}}{10^{-2} M_{\odot}}\right)^{2/3} \left(\frac{\beta_{\rm ej}}{0.9}\right)^3 \left(\frac{d}{100 \rm Mpc}\right)^{-2} \rm erg \ s^{-1} \rm cm^{-2}$$

#### IC energy not affected by KN effect

$$E_{\rm IC} \lesssim 2 \times 10^{11} \left(\frac{M_{\rm ej}}{10^{-2} M_{\odot}}\right)^{1/15} \left(\frac{\beta_{\rm ej}}{0.9}\right)^{-1/5} \,\mathrm{eV} \qquad \qquad \epsilon_{\rm e} = 0.1 \\ n = 10^{-2} \mathrm{cm}^{-3}$$

#### GRB 130603B @100Mpc

#### CTA could give constraints on ejecta parameters.



# Summary

#### **Gamma-ray Burst**

Extended, Plateau, and scattered emissions could be detectable by current and planed detectors.

#### **Macronova**

X-ray-powered model explains IR excess and allow for broader parameter region even if the ejecta mass is  $\sim 10^{-3}$  solar mass.

#### **Remnant of Merger Ejecta**

CTA could give constraints on the ejecta parameter space, which also explains the IR excess in X-ray-powered model.