

Diffuse TeV gamma-rays from the Galactic center and Sgr A*

Yutaka Fujita (Osaka) Shigeo S. Kimura (Tohoku) Kohta Murase (Penn State)

Physical Review D 92, 023001 (2015)

Contents

Cosmic-ray (CR) acceleration in Low-luminosity active galactic nuclei (LLAGNs)

- Radiatively inefficient accretion flows (RIAFs)
- Sagittarius A* (Sgr A*) and Central Molecular Zone (CMZ)
 - Sgr A* is an LLAGN
- Diffusion of CR protons in the CMZ
- Diffuse TeV gamma rays from the Galactic center
- Sgr A* as a PeVatron (preliminary)
- Summary

CR acceleration in RIAF

 Protons are stochastically accelerated in turbulence in a RIAF

– *pγ* and *pp*-interaction in the RIAFs may be responsible for production of the neutrinos detected by IceCube (Kimura, Murase, & Toma 2015)

BH

p

р

D

p

IceCube Observations

Uniform distribution of neutrinos Neutrinos have extragalactic origin

IceCube home page

CR protons in CMZ

Some of the protons accelerated in the RIAF should plunge into the CMZ
 – They produce γ-rays through *pp*-interaction
 – We calculate the diffusion of CR protons in the CMZ and the γ-ray emission

Sgr A*

CMZ

p+p

CMZ

Diffuse y-rays from the CMZ

HESS observation around the Galactic center (GC)

CMZ radiates γ-rays

• CRs have diffused from the GC (HESS collaboration 2015)

We investigate this $TeV \gamma$ -ray emission

Model

We solve a diffusion equation

Spherically symmetric

• We ignore the outflow perpendicular to the Galactic disc

$$\frac{\partial f}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \kappa \frac{\partial f}{\partial r} \right) + Q$$

Diffusion coefficient (κ)

• Typical Galactic value (e.g. Gabici+ 09)

$$\kappa = 10^{28} \left(\frac{E_p}{10 \text{ GeV}}\right)^{0.5} \left(\frac{B}{3 \,\mu\text{G}}\right)^{-0.5} \text{ cm}^2 \text{s}^{-1} ,$$

- $B \sim mG$ in CMZ
- Source (Q)
 - CRs accelerated in Sgr A* (Kimura+ 13)
 - Only a tiny fraction of CRs plunge into the CMZ

 $\lambda \sim 10^{-3}$

Spectrum of CRs Injected at Sgr A*

- RIAF parameters determine the CR spectrum
 - Accretion disc size, magnetic fields, turbulence
 - We chose these RIAF parameters so that they are consistent with the IceCube observations (flux, spectrum)
 - IceCube neutrinos are coming from numerous LLAGNs in the Universe
 - Kimura et al. (2015)

Results Current accretion rate on Sgr A* is very small $\dot{m} = \dot{M}/\dot{M}_{Edd} = 4.2 \times 10^{-6}$ • If \dot{m} is constant, γ -ray luminosity is much smaller than the Fermi and HESS observations s_1) Fermi *E² dN/dE* (GeV cm⁻² s 01 01 ... 10⁻⁸ **HESS** Spectrum Red: γ-ray Blue: neutrino 10⁶ 10^{2} 10⁰ 10^{8} 10^{4}

E (GeV)

Past activity of Sgr A*

 Observations have indicated that Sgr A* was much more active in the past

- Sunyaev+1993, Koyama+96, Murakami
 +00, Totani+06, Ryu+13
- *m* ~ 0.001
 (M) 100 yrs ago)
 TeV γ-ray observations can be explained
 GeV emission has another origin

Uncertainty

Since our model is rather simple, there are uncertainties in parameters

- Increase the typical energy of protons assuming more efficient acceleration
- CTA can discriminate

models with different parameters

History of CR Acceleration

Current γ-ray spectrum of Sgr A* does
 hot have to coincide with that of the
 CMZ

 γ-ray spectrum of the CMZ reflects the past activity of Sgr A*

PeV cosmic rays

 Supernova remnants (SNRs) are often thought to be the source of CRs for E < 10^{15.5} eV

– PeV=10¹⁵ eV

However, observational evidence is scarce for $E[\mathbb{X}][\mathbb{X}] 10^{14}$

Kappes et al. (2007)

- Cutoff at E 10¹⁴ eV

Summary

 LLAGNs may accelerate CRs and may be the source of neutrinos detected by IceCube

- If so, Sgr A* should produce a lot of CR protons
- Some of them should enter the Central Molecular Zone and generate γ-rays

We solved diffusion equation of the CRs and calculated γ-ray spectra

 The results are consistent with TeV γ-ray observations if Sgr A* was active in the past

Summary

Sgr A* may be providing PeV CRs observed at the Earth

The problem of anisotropy must be solved