Theory and Simulations of Particle Acceleration in Collisionless Non-relativistic Shocks

### Takanobu Amano (University of Tokyo)

In collaboration with: M. Hoshino, Y. Matsumoto, T. Saito

### Shocks in the Universe



### Particle Acceleration



# "Standard Model"

- Diffusive Shock Acceleration (DSA)
  - established in late 70's [e.g., Bell '78]
  - predicts a universal power-law; N  $\propto$  E<sup>-2</sup>
  - simple; comparison with observations is relatively easy



# Questions

- What fraction of the total energy is converted into accelerated particles ?
- 2. What is the maximum particle energy achievable ?
  - Key Issues
    - Injection
    - Nonlinear Feedback
    - Particle Transport

# Energetics



Energy conversion efficiency ~ 10% ? (needed for SNRs)

Not bad at CME-driven shocks. But, the maximum energy is <sup>1034</sup>much smaller.

Mewaldt+(2006)

## Positive Feedback

#### DSA is an intrinsically efficient process!



Recall that the standard DSA theory predicts the spectrum of the form:  $f(p) \propto p^{-q} \quad q = \frac{3r}{r-1}$  (r is the shock compression ratio)

# Possible Negative Feedback?

#### Injection

If the injection occurs predominantly at the subshock, the reduction of Mach number in the precursor may lower the injection rate.

#### • Turbulent Heating

Turbulence driven by streaming CRs in the precursor becomes so strong, so that one expects turbulent dissipation may reduce the overall efficiency.

# Injection



# The Injection Problem

The seed population must have sufficiently large energy so that they

- easily traverse the shock: v >> V<sub>shock</sub>
- scatter by waves for isotropization



cyclotron resonance condition  $\omega-kv_{\parallel}=\Omega/\gamma$   $\int$  for  $\omega\ll\Omega/\gamma$   $kr_g\sim 1$ 

relatively easy for ions, but serious difficulty for electrons





# Electrons

Only relativistic electrons can satisfy the resonance condition with low-frequency MHD waves

$$\omega - k v_{\parallel} = \Omega / \gamma$$

Possible solutions to the electron injection problem:

♦ Generation of high-frequency (whistler) waves

or

Pre-acceleration to > 100keV

# Generation of whistlers

- Q: How to generate whistlers?
- A : Consider mirrorly reflected energetic electrons.



Amano & Hoshino (2010, PRL)

## In-situ Observations

Oka+2006 argued that the electron acceleration efficiency at the bow shock is regulated by a whistler critical Mach number  $M_{crit}^{W}$ This by chance corresponds to the critical Mach number of ours (within a numerical factor ~1)



# First Principles Approach

To understand possible pre-acceleration mechanisms:

- Shock internal structure
- Kinetic instabilities
- Plasma waves

must be considered. This involves extremely complicated nonlinear physics. Fully kinetic Particle-In-Cell simulation is the only option to investigate the mechanisms.

#### Caveat:

Any (!) simulations employ artificial parameters such as

- ion-to-electron mass ratio: mi/me
- plasma-to-cyclotron frequency ratio:  $w_{pe}/\Omega_{ce} \propto v_A$

Unfortunately, plasma instabilities are sometimes sensitive to these parameters.

# Shock Surfing Acceleration

Plausible mechanism at very high Mach number shocks:

- 1D : McClements+(2001), Hoshino&Shimada(2002), Amano&Hoshino(2007)
- 2D : Amano&Hoshino(2009), Matsumoto+(2012)



### Spontaneous Reconnection



# Magnetic Field Amplification



Extremely fast decay of X-ray hot spots Uchiyama+(2007, Nature) Magnetic field amplification by CR streaming instability Lucek&Bell(2000), Bell(2004)

# Non-adiabatic Heating

Wave kinetic equation (for shear Alfven wave)  $\frac{\partial}{\partial t} \left( \frac{\delta B^2}{4\pi} \right) + \frac{\partial}{\partial x} \left[ \left( \frac{\delta B^2}{4\pi} \right) \left( \frac{3}{2}u - v_A \right) \right] = u \frac{\partial}{\partial x} \left( \frac{\delta B^2}{8\pi} \right) + v_A \frac{\partial}{\partial x} P_c - L$ 

is coupled with the CR diffusion-convection and hydrodynamic equations.

Work done by CR pressure gradient (wave generation)

Dissipation of wave energy leading to entropy production

$$\frac{\rho^{\gamma-1}}{\gamma-1}u\frac{\partial}{\partial x}\left(\frac{P_g}{\rho^{\gamma}}\right) = L$$

Assumption of a specific form of dissipation:  $L=\alpha v_A \frac{\partial P_c}{\partial x}$ 

[e.g., McKenzie & Voelk, 1982]



Non-adiabatic heating substantially reduces the subshock Mach number ! The acceleration efficiency is degraded from the standard NLDSA solution, but yet resides above the test-particle limit.

T. Saito (Ph.D thesis)

# Conclusions

- Particle acceleration efficiency of 10-20% (in terms of energy conversion rate) seems to be possible.
- Conventional understanding is that nonlinearity enhances the efficiency, in an essentially unlimited manner.
- There must be something that would suppress otherwise the unlimited acceleration.
- The injection and turbulence have yet remained the key issues in the shock acceleration theory.