Are blazar jets matter or poynting-flux dominated?

+ short introduction of this Session "Particle Acceleration Mechanisms in Astrophysical Sources"

CTA-Japan workshop at ICRR on 14 January 2016

Masaaki Hayashida (Institute for Cosmic-Ray Research, the University of Tokyo)

- A Short introduction of this session *"Particle Acceleration Mechanisms in Astrophysical Sources"*
- 2. Acceleration mechanism in blazar jets
 - Observational results (Fermi-LAT) from blazar 3C279
 Two huge outbursts
 - a. Flare on 20th December 2013 (Hayashida+15, ApJ)
 - hard γ -ray index
 - high Compton dominance: $L_{IC}/L_{syn} \sim 1000$
 - b. Flare on 16th June 2015 (Fermi-LAT Coll. 16)
 - Very fast variability

Particle accelerations in astronomical sources

Jan. 14, 2016 CTA-Japan workshop

R Kotera K, Olinto AV. 2011. Annu. Rev. Astron. Astrophys. 49:119–53

1st-order Fermi acceleration

Supernova remnant as Cosmic-ray origins

mage data Chandra X-ray, DSS Optical and VLA rad

IC443

image data from ESA Herschel and XMM-Newtor

Diffusive shock acceleration (DSA) in SNR

SN 1006

(Credit:X-ray: NASA/CXC/ Rutgers/G.Cassam-Chenai, J.Hughes et al.; Radio: NRAO/ AUI/NSF/GBT/VLA/Dyer, Maddalena & Cornwell; Optical: Middlebury College/ F.Winkler, NOAO/AURA/NSF/ CTIO Schmidt & DSS)

(more in Amano-san's talk)

Crab flare: reconnection?

- Compactness: $t_{var} \sim 4-8$ hrs \rightarrow Emission region $3x10^{-4}$ pc
- Hard spectrum: Γ ~1.3, inconsistent with shock acceleration
- Synchrotron 375 MeV > 160 MeV (radiation reaction limit)
 → challenge classical acceleration models

1. Doppler beaming? (but not seen in the Crab)

2. Reconnection!? → Zenitani-san's talk

extra-galactic: relativistic jet

niversity of Tokyo

- where is the gamma-ray emission site?
 (~ where is the jet dissipation region?)
- what is the acceleration mechanism? (DSA (Fermi-I), Stochastic (Fermi-II), reconnection?)
- what is the dominant component in the jets? (matter or Poynting flux dominated at the gamma-ray emission region?)

relativistic Jet formation

Relativistic Jet Formation

(these days) commonly considered: MHD mechanism

Blandford-Znajek process: (from rotating BHs)

3DMHD simulation (BZ effect)

(c.f, Blandford&Payne 82, from magnetized accretion disk)

are the jets strongly magnetized?

talks by Kojima-san Mizuta-saŋ₀

Jan. 14, 2016 CTA-Japan workshop

Gamma-ray emission from AGNs

Emission from Jets (FSRQ)

10⁻⁹

10⁻¹⁰

10⁻¹¹

 10^{-12}

 $[erg/cm^2/s]$

 νF_{ν}

Jan. 14, 2016 CTA-Japan workshop

3C 279 γ-ray activity for 7 years ICRR Institute for Cosmic Ray Research

Masaaki Hayashida (ICRR, U. Tokyo) Jan. 14, 2016 CTA-Japan workshop

Flare profile

- asymmetric profile
- hourly scale variability at 100 MeV:
 - very efficient cooling \rightarrow need dense external photon \rightarrow inside BLR

LAT Spectrum

(MH+15, *ApJ*) **Red (Flare 1, Period B)** • Very hard index (1.71±0.10) ↔ typ. FSRQ: ~2.4

peaked at a few GeV
 ↔ typ. FSRQ: < 100 MeV

-	Period	Gamma-ray spectrum (Fermi-LAT)					Flux (> 0.1 GeV)	# of photons	
_	(MJD - 56000)	fitting model ^a	$\Gamma/lpha/\Gamma_1$	β/Γ_2	$E_{\rm brk}~({\rm GeV})$	TS	$-2\Delta L^{b}$	$(10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1})$	> 10 GeV
=	Period A (3 days)	PL	2.36 ± 0.13			174		5.9 ± 0.9	1
	Dec 16,0h - 19,0h	LogP	2.32 ± 0.17	0.03 ± 0.07		174	< 0.1	5.7 ± 0.9	(26.1 GeV)
	(642.0 - 645.0)								
-	Period B (0.2 days)	PL	1.71 ± 0.10			407		117.6 ± 19.7	1
	Dec 20,9h36 - 14h24	LogP	1.12 ± 0.31	0.19 ± 0.09		413	6.0	94.5 ± 18.1	(10.4 GeV)
	(646.4 - 646.6)	BPL	1.41 ± 0.17	3.01 ± 0.91	3.6 ± 1.6	415	7.6	100.6 ± 18.4	
-	Period C (3 days)	PL	2.29 ± 0.13			219		17.1 ± 2.8	1
	Dec 31,0h – Jan 02,0h	LogP	2.29 ± 0.16	0.00 ± 0.06		219	< 0.1	17.1 ± 2.9	(GeV)
	(657.0 - 660.0)	BPL	2.22 ± 0.42	2.32 ± 0.20	0.34 ± 0.27	219	< 0.1	16.9 ± 3.1	
_	Period D (0.267 days)	PL	2.16 ± 0.06		•••	1839		117.9 ± 7.1	1
lon 1/	Apr 03.5h03 - 11h27		2.02 ± 0.08	0.10 ± 0.05	chida (ICE	1840	5.3	114.9 ± 7.1	(13.5 GeV)
Jan. 14	, (750.210 - 750.471) a	BPLSIIOP	2.02 ± 0.09^{13}	2.89±0.45ª	51104 6.6 F	1843	108.00)	115.1 ± 7.7	

Multi-band light curve

Iniversity of Tokyo

Broad band SED

Iniversity of Tokyo

emission model for Period B

- Gamma-ray emission site should be inside BLR (< 0.1 pc)
 efficient cooling at 100 MeV for 2hr variability
- 2. very matter dominated jet: $L_B/L_{jet} \sim 10^{-4}$
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1

emission model for Period B

- Gamma-ray emission site should be inside BLR (< 0.1 pc)
 efficient cooling at 100 MeV for 2hr variability
- 2. very matter dominated jet: $L_B/L_{jet} \sim 10^{-4}$
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1

Regions of AGN Jet Propagation

slide from Yosuke Mizuno

Poynting flux dominated? Kinetic energy flux dominated?

• if jet is derived by the magnetic field (e.g., Blandford-Znajek process) ,,,,

 \rightarrow jet should be Poynting-flux dominated jet < 10³ r_g (= inside BRL)

- Leptonic models can explain well the broad band SED inside BLR (0.03 pc < $10^3 r_g$ for $5 \times 10^8 M_{solar}$)
 - the emission model results suggest kinetic energy dominated jets (some models with equipartition see e.g., Dermer+14, *ApJ*, *782* for 3C 279)
- Hadronic models require stronger magnetic fields (10-100 G) than the Leptonic models (0.01-1 G), but also requires very high power of relativistic protons, 10⁵⁰ erg/s (e.g.,Zdziarski & Boettcher 15)

$U_{e(\pm)}/U_B$ at the jet base of M87 (Kino+14, ApJ, 786,5, Kino+15, ApJ, 803,30) Allowed B, γ_{min} region $(L_i = 5 \times 10^{44} \text{ erg/s}, p = 3)$ based on Synchrotron-self absorption $\frac{U_{\pm}}{U_B} = \frac{16\pi}{3b^2(p)} \frac{k(p)\epsilon_{\pm,\min}^{-p+2}}{(p-2)} \left(\frac{D_A}{1 \text{ Gpc}}\right)^{-1} \left(\frac{\nu_{\text{ssa,obs}}}{1 \text{ GHz}}\right)^{-2p-13}$ Poynting Power Limit (5*10^44 erg/s) $\times \left(\frac{\theta_{\rm obs}}{1\,{\rm mas}}\right)^{-2p-13} \left(\frac{S_{\nu_{\rm ssa},\rm obs}}{1\,{\rm Jv}}\right)^{p+6} \left(\frac{\delta}{1+z}\right)^{-p-5}$ 100 (for p > 2). $B_{ m tot}$ [G] Synchrotron Limit core detection: (@230GHz) $\theta_{\text{thick}} < 40 \mu as$ (at 230 GHz) $40 \mu as$ Minimum Size Limit (ISCO size) EHT numbers: $log(U_{P}/U_{R})$ beam 10Rs 2 3 4 5 6 10 2 3 4 5 6 100 0.01pc 1128 2 3 4 5 6 possible 1000 jet base of M87 BH shadow optically-thick $\rightarrow U_R \stackrel{\gamma_{\pm,\min}}{\gg} U_{e(\pm)}$ (VLBA at 43GHz) region ($\geq 21 \ \mu as$) optically-thin region (40 µas)

Jan. 14, 2016 CTA-Japan workshop

(See also Nalewajko+14, ApJL, 796)

emission model for Period B

- Gamma-ray emission site should be inside BLR (< 0.1 pc)
 efficient cooling at 100 MeV for 2hr variability
- 2. very matter dominated jet: $L_B/L_{jet} \sim 10^{-4}$
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1

hard (p<2) electron index

p: injected electron index $p \ge 2$: normal standard shock (Fermi-I) acceleration $too \ soft!!$

magnetic reconnection

Our result:

jet magnetization: $\sigma < 10^{-3}$

- the reconnection will efficiently work in this condition?
- very localized acceleration sites?
 - can generate
 10⁴⁸ erg/s emission?
- → Stochastic Acceleration ? (2nd order Fermi acceleration) (see Asano-san's talk)

3C 279 γ-ray activity for 7 years

Summary & Conclusion

- Blazar 3C 279 showed outbursts (>10⁻⁵ ph/cm²/s) in last years
 - 2013 Dec.: orphan γ -ray flare, very hard index ($\Gamma_{\gamma} \sim 1.7$)
 - 2015 Jun.: the largest flare with minute-scale variability
- where is the gamma-ray emission site?
 - inside BRL (~100 r_a) for vary fast variability at 100 MeV
 - Jets should be sufficiently accelerated (Γ >50) even at < 100 r_a
- what is the dominant component in jet?
 - emission model : kinetic-flux dominated : $L_B/L_{iet} \sim 10^{-4}$
 - jet simulation: Poynting-flux dominated (< $10^3 r_g$)
 - radio observation (SSA): Poynting-flux dominated (M87 at $\sim a$ few r_a)
- what is the acceleration mechanism?
 - not only shock accelerations should work (e.g., Fermi-II, reconnection)