天の川銀河中心領域のX線観測

X線トモグラフィによるSgr A*の活動(1000年の活動) GC South/North プラズマ(10万年の活動) 高階電離鉄輝線の起源(100万年?の活動) 銀河面の中性鉄輝線の起源

鶴 剛 (Kyoto University)

on behalf of the Suzaku GC team.

20141003_GC_Suzaku_CTA_v2.key

I000年間の活動 ~X線反射星雲の3-D配置~

2

Ryu et al. 2009, PASJ, <u>61</u>, 751 Ryu et al. 2013, PASJ, <u>65</u>, 33

Ryu FY2012 Doctor Thesis, Kyoto Univ.

204pointings, 5.96Msec SWG, AO, LP, KP x2 (|1|<3.5°, |b|<5°) 36 refereed papers,7 Doctor Theses.

Suzaku Spectrum of the GC region

6.7-keV Line Image (He-like Fe Kα)

 Thermal Plasmas smoothly distribute in the GC region. 5

- The origin is still under debate.
 - Truly diffuse plasma filling in the GC region.
- Or, collection of faint unresolved point

sources.

• K-edge : $N_H = 2 - 10 \times 10^{23} \text{ cm}^{-2}$ Time Variable :

Size ~10 lys, τ ~ 10 yrs

 \Rightarrow lonizing particle is X-ray "X-ray Reflection Nebula (XRN)"

- Need a source with $L_X \sim 10^{39} \text{ergs/s}$
- No such bright source.
- Sgr A* is only one possible source.

Echo of the past activity of Sgr A^*

 \rightarrow Look back time.

position of XRN is necessary.

"X-ray Tomography"

- The GC thermal plasma distributes smoothly.
- An XRN (e.g. Molecular Cloud: MC) is located in the GC thermal plasma.
- If an XRN (MC) is located in the near side of the thermal plasma, then soft X-rays from the plasma is absorbed by the XRN due to photo-absorption.
- In the case that the XRN (MC) is located in the far side of the thermal plasma, soft X-rays from the plasma is un-absorbed.

Spectral Modeling

3-D distribution of XRNe

Light curve of Sgr A* in the past

- Sgr A* had been in active phase 50 600 years ago.
- Sgr A* made nearly one order of magnitude variation in a short time (<10 years) at a couple of times.

How about before 600 yrs ago ?

GC South Plasma : I0万年前の活動 ~再結合プラズマの発見~

Nakashima et al. 2013, ApJ, 773, 20

Nakashima FY2013 Doctor Thesis, Kyoto Univ.

Bipolar X-ray emission from the GC

- M = 710M_@
 - $E = 1.6 \times 10^{51} ergs$

n=0.16cm⁻³

● I0~I00個分のSNRに相当

●星団は無い

⇒SNRやSuper Bubbleではない

Recombining Plasma

- 強い再結合連続線(RRC)
- 電離非平衡:イオン化温度 > 電子温度(kTe=0.46keV)
- ●イオン化温度:初期 kT_{init}=1.63keV & 0.16cm³ → ~1×10⁵yr経過

イオン化温度 > 電子温度:2つのシナリオ

6

- 平衡状態から電子温度を下げる
 - I0⁵-I0⁷yr前に爆発的星生成活動あり (Matsunaga+II,Yusef-Zadeh+09)
 - 超新星爆発 ⇒ 銀河中心領域で高温プラズマ
 - 銀河面垂直に吹き出す
 - ●断熱膨張によりkTeが下がった.
 - 音速で膨張に必要な時間~8x10⁴yr ← 観測と無矛盾
- 平衡状態からイオン化温度を上げる
 - 元々低温のプラズマが存在していた
 - Sgr A*からのX線による光電離が起こる. Lx ~ 7.6x1043ergs/s
 - GC Plasma には、光電離 (RP)の痕跡がない.

⇒ Sgr A*からのX線放射はビーミングか?

高階電離鉄輝線の起源:100万年?の活動

~点源寄せ集め or 真に拡がる?~

Uchiyama et al. (2011) PASJ 63, S903 Uchiyama FY2009 Doctor Thesis, Kyoto Univ.

6.7keV Line Profile vs Stellar and Point Sources Distribution

6.7keV Lines Excess at GC

The 6.7keV has more extended distribution than point sources.

Truly diffuse plasma

<u>プラズマはエスケープしているか?</u>

- $E_{gas} \sim 3 \times 10^{52} ergs$
- $\tau_{esc} = 2 \times 10^4 yr$
- エスケープエネルギー
 - ~ 10⁻³ SN yr ⁻¹

加熱 = 超新星爆発, Sgr A* の活動 ~10⁻⁵ SN yr⁻¹ Tsuru+
 ⇒ 音速で逃げ出すと加熱が追いつかない (Suzaku2007)

⇒エスケープしていない.

⇒磁場で閉じ込めか?

- B=0.1mG~1mG
 - \Rightarrow P_B/k = 10⁶-10⁸ K/cm³ ~ P_{gas}/k = 2×10⁷ K/cm³
 - ⇒ 可能性あり

だが磁場に沿った方向にプラズマは移動できるのでは?

Nishiyama+13, ApJL, 769, 28

銀河面の中性鉄輝線(6.4keV)の起源

H.Uchiyama (Shizuoka), K.K.Nobukawa

T.Tsuru et al. (2014) arXiv:1408.0205v1

6.4-keV line emission from Ridge

EW map of the 6.4-keV line near GC

No region with such high EW has been discovered except the GC.

East side of GC in I ~ 2° to 4°

- Oct. 2012–Mar. 2014
- 100 ksec × 10 pointngs

West side of GC in $I \sim -2^{\circ}$ to -4°

- Oct. 2006–Feb. 2009
- 50 ksec × 12 pointngs

6.4-keV 6.7-keV lines vs l

6.4-keV line flux & I3CO vs l

6.4-keV line follows CO.

6.4-keV line : Diffuse Origin Fluorescence from Cool Matter.

中性Fe輝線の成分 =

東(中性Feが強い) - 西(中性Feが弱い)

5.4 keV EW (keV)

Ionizing particles

Clump2

- X線光電離 or keV電子 or MeV陽子?
- 大きなEW ⇒ 電子は除外
- Sgr A* による光電離は等方的だろう
- Clump2 / footpoint は非等方を示唆 ⇒ MeV陽子

- Sge A*のフレア活動
- ●GCの巨大分子雲
 - X線の時間変動
 ⇒ Sgr A*の活動時間変化
 ⇒ TeVに時間変動は無い?

Figure 1 | VHE γ -ray images of the Galactic Centre region. a, γ -ray count map; b, the same map after subtraction of the two dominant point sources showing an extended band of gamma-ray emission. Axes are Galactic

- ●銀河面放射
 - X線はMeV陽子 ⇔ TeVはTeV陽子
 - ●MeV陽子は大きく拡がれない ⇒ 加速源を見ている?
 - ●加速源と伝搬

