WIMP DM & γ -ray observations

Shigeki Matsumoto (Kavli IPMU)

From recent various experimental & theoretical observations, the WIMP dark matter seems to be a fermionic particle which carries the weak isospin. This fact indicates that DM search using γ -ray observations will be the most important one!!!

WIMP DM & direct detections

~ WIMP (Weakly interacting massive particle) hypothesis ~ DM is a neutral and stable particle whose mass is O(0.1 - 1)TeV!

It is consistent with DM cosmology.

Why is DM weakly interacting?
Why is DM cold in present Univ.?
Why is abundance Ω_{DM}h² ~ 0.1?

It is consistent with Particle Phys.

1/8

BSM for EWSB often predicts WIMP candidate. Its mass and the scale of the EWSB can have the same origin!

Indirect detections put a limit as $\sigma v < 1-10 \text{ pb} \cdot c$.

Collider experiments (LHC) put a limit as $\sigma <$ 1 – 10 fb.

Direct detections put a limit stringently as s < 1 – 10 zb!

WIMP DM & direct detections

Direct detection experiments put stringent limits on the WIMP scattering off a nuclei, so that those already give an important implication to its property.

When WIMP has DM-DM-h coupling of O(1), current limits already ruled out it.

Scalar and Vector WIMP have a dimension 4 interaction inducing the O(1) coupling.

Fermionic WIMP has the O(1) coupling when its state is given by the mixing of different weak-isospin states.

The coupling is suppressed for Fermionic WIMP close to a weak-isospin eigenstate.

2/8

Fermionic WIMP (weak-isospin singlet)

The singlet WIMIP does not have any renormalizable interactions coupling to SM particles directly.

Additional new particles with their masses of $O(m_{WIMP})$ must exist. \rightarrow

Or m_{WIMP} must be tuned enough. \rightarrow

4/8

Fermionic WIMP (weak-isospin non-singlet)

The non-singlet WIMIP always has renormalizable interactions coupling to SM particles directly, the SU(2)_L gauge interactions. Thermal relics are consistent with the PLANCK result when its mass is 1-3TeV. [Hisano, S.M., et.al., PLB, 2007]

Is the WIMP relevant to AMS-02 anomaly?

The WIMIP is not necessarily to be absolute stable and it may decay into SM particles via e.g. GUT suppressed interactions. [Ibe, S.M., Shirai, Yanagida, 2014]

 $L_{inf} = (1/\Lambda_{GUT})^2 \chi LLE^{c} \rightarrow \tau \sim 10^{-27} (1 \text{TeV}/\text{m})^5 (\Lambda_{GUT}/10^{16} \text{ GeV})^4 [s]$

Fermionic WIMPs

The non-singlet WIMP is theoretically favored

The LSP is the neutral wino, namely SU(2)_L-triplet Majorana fermion!

DM mass: $m_{\chi} \sim 1-3$ TeV & Scattering cross section $\sigma_{SI}(\chi N) \sim 10^{-11}$ pb.

Continuum & line γ -rays from the WIMP

• Wino annihilates mainly into W bosons, and W-decay produces continuum γ .

• Thanks to the existence of charged wino, wino annihilates also into line γ .

Sommerfeld effect of Wino annihilation

When the wino mass is heavier than O(1)TeV, annihilation cross sections of all channels are significantly boosted by the Sommerfeld enhancement. [Hisano, S.M. Nojiri, PRL, 2004]

The effect can be understood by the effect of long range forces (exchanging W, Z, γ) which modify the initial wino wave functions.

γ -ray observations of the WIMP

dSph: Continuum γ -ray obs. at satellite born experiments (Fermi-LAT, etc.) G.C.: Line γ -ray obs. at air Cherenkov type experiments (H.E.S.S., CTA, etc.)

In addition to continuing dSph obs., it is important to upgrade stellar kinematical data of dSphs!

PFS of the SuMIRe project! [Ibe, Ichikawa, Ishigaki, S.M., Sugai]

7/8

- ・様々なスピン及び量子数を持つWIMP暗黒物質候補の中で、弱アイソ スピンを持つフェルミオン暗黒物質が現在とても注目されている。
- ・ このWIMP暗黒物質は、その質量が1-3TeV当たいと予言され。また 対消滅過程がSommerfeld効果によい増大し、ガンマ線の連続スペクト ル及び線スペクトルを強い強度で放出する。
- ・ そのため衛星実験(Fermi-LAT)や空気チェレンコフ実験(H.E.S.S.や CTA等)を用いた矮小楕円体銀河(dSphs)や銀河中心(G.C.)の観測は、 最も有効な暗黒物質の検出方法である。

Only the mass dimension 5 operator O_{PS} breaks the CP-symmetry.

• Flavor blindness is assumed for each 4-Fermi (mass dimension 6) operators.

• The regions of the cutoff $\Lambda > 10 m_{DM}$ and $10 m_{DM} > \Lambda > 2 m_{DM}$ are considered.