

Fermi ガンマ線衛星による 暗黒物質探査

2014年10月3日@東京大学 柏キャンパス (高エネルギーガンマ線でみる 極限宇宙2014) 水野恒史 (広島大学 宇宙科学センター) On behalf of the Fermi-LAT collaboration

Dark Matter Search with Fermi Large Area Telescope

Oct. 3, 2014@Kashiwa (The Extreme Universe viewed in very high-energy γ-rays) T. Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration

Gamma-rays may encrypt the DM signal

Gamma-rays may encrypt the DM signal

2014-09_CTA_FermiDM.pptx

- Fermi = LAT + GBM
- LAT = GeV Gamma-ray Space Telescope (20 MeV ~ >300 GeV; All-Sky Survey)

Cape Canaveral, Florida T. Mizuno et al. 1873 sources Nolan+12

- Pair-conversion telescope (TKR+CAL+ACD)
 - good background rejection due to "clear" γ-ray signature
 - (also sensitive to CR electrons)
- Tracker (TKR): pair conversion, tracking
 - angular resolution is dominated by multiple scattering below ~GeV
- Calorimeter (CAL):
 - use shower profile to compensate for the leakage
- Anti-coincidence detector (ACD):
 - efficiency>99.97%

energy band: 20 MeV to >300 GeV effective area: ~8000 cm² (>1 GeV) FOV: >2.4 sr angular resolution: <1 deg (>1 GeV) energy resolution: ~10% (@1 GeV)

> Anti-coincidence Detector Segmented scintillator tiles

• GeV gamma-ray sky

= Galactic Diffuse + astrophysical objects + unresolved sources + <u>others</u>

2014-09 CTA FermiDM.pptx **DM Search Strategies with** γ **-rays (1**) Dermi Gamma-ra Space Telescope (Figure taken from Pieri+11) Galactic Center: **Pros:** Good statistics MW halo: Satellites: Cons: confusion, diffuse BG Pros: very good statistics Pros: Low BG and good source id Cons: diffuse BG Cons: low statistics Baltz+08 <u>Spectral lines:</u> <u>Extragalactic:</u> Pros: no astrophysical uncertainty Pros: very good statistics (Smoking gun) Cons: diffuse BG, Cons: low statistics Clusters: astrophysical uncertainties Pros: low BG and good source id Cons: low statistics, astrophysical uncertainties 8/30 T. Mizuno et al.

In short, we search for DM signal in γ -rays by utilizing ullettheir spatial and/or spectral signatures


```
DM signal (e.g., line)?
```


Good understanding of Galactic diffuse emission and the instrument is crucial

2014-09_CTA_FermiDM.pptx

DM Search Strategies with γ -rays

- In the standard cosmological model, structures form from bottom up. Numerical simulations predict that the MW should be surrounded by smaller structures.
- Optically observed <u>Dwarf Spheroidal (dSph) galaxies</u> are the most attractive candidate subhalo objects
 - relatively nearby
 - known position and mass (stellar velocity dispersion)
 - very high M/L ratio (>=100 Msun/Lsun)
 - low astrophysical gamma-ray background

 No significant γ-ray emission if found to be coincident with any of the 25 known dSphs

 No significant γ-ray emission if found to be coincident with any of the 25 known dSphs

- 18 dSphs with kinematically determined J-factors
- 15 "nonoverlaping" dSphs used for a combined analysis

Combined Limits by 15 dSphs

- 4 years of data, 500 MeV-500 GeV
- J-factor uncertainties accounted for
- Expected sensitivity calculated from the data:
 - choose 25 blank-sky locations as a control sample (high Galactic lat. (|b|>30deg), >1deg from 2FGL)
 - combined analysis on 300 randomly selected sets of blank fields

Ackermann+14

 M_{WIMP} >=10 GeV to satisfy $\langle \sigma v \rangle$ =3x10⁻²⁶ cm³ s⁻¹ Largest excess (TS=8.7) for 25 GeV WIMP to bb (global p-value ~ 0.08 or 1.4 σ)

T. Mizuno et al.

Space Telescope

15/30

 Although not so constraining (yet), ground Cherenkov Telescopes gave limits complementary to Fermi-LAT results

- Although not so constraining (yet), ground Cherenkov Telescopes gave limits complementary to Fermi-LAT results
- CTA is able to exclude (or detect) WIMP of M>=300 GeV
- With a factor of 3 improvement of the Fermi-LAT (more exposure, improved response, more dSphs), WIMP mass of 10 GeV ~ >1 TeV will be covered with sensitivity at <σv>~3x10⁻²⁶ cm³ s⁻¹

2014-09_CTA_FermiDM.pptx [2] Extragalactic Gamma-ray Background (EGB)

Space Telescope

 The EGB may encrypt the signature of the most powerful processes in astrophysics

Total EGB = Isotropic Gamma-Ray Background (IGRB)+resolved sources Possible Cosmological WIMP contribution to IGRB T. Mizuno et al. 2014-09_CTA_FermiDM.pptx Space Telescope
Space Telescope
CTA_FermiDM.pptx
Space Telescope
Spa

- Galactic Diffuse dominates γ-ray sky, hence is the most significant source of uncertainty for EGB/IGRB
- Three Diffuse models are considered to gauge uncertainty
 - ModelA: similar to a model in Ackermann+12 (baseline model)
 - ModelB: add population of electron-only sources near GC (better match to IC)
 - ModelC: non-uniform CR diffusion rate (better reproduce flat emissivity)
- Variation of diffuse model parameters (e.g., halo size) also considered

(Fermi-LAT Collaboration, Ackermann, Bechtol)

- Updated LAT measurement of IGRB
 - 200 MeV-100 GeV (Abdo+10) -> 100 MeV 820 MeV
- Significant high-energy cutoff feature in IGRB
 - Consistent with simple source population attenuated by EBL
- Roughly half of total EGB intensity above 100 GeV now resolved into individual sources
- Then, how about constraints on DM?

2014-09_CTA_FermiDM.pptx Contribution of Cosmological WIMP

• Flux from cosmological WIMP annihilation

$$\frac{d\phi}{dE_0} = \frac{c \langle \sigma v \rangle (\Omega_{\rm DM} \rho_c)^2}{8\pi m_{DM}^2} \int dz \frac{e^{-\tau (E_0,z)} (1+z)^2 \zeta(z)}{H(z)} \frac{dN}{dE} \Big|_{\substack{E=E_0(1+z)}}$$

Flux multiplier
(clumpiness of DM) WIMP-induced spectrum

 Clumpiness of DM is the main source of uncertainty. Two independent and complementary approaches to compute ζ(z)

2014-09_CTA_FermiDM.pptx

- Two types of "extreme" limits (they bracket the true limit)
 - Conservative, no assumed astrophysical contributions to IGRB
 - Optimistic, 100% of the IGRB assumed to be of astrophysical origin
- Galactic substructure taken into account (based on our Halo Model) to derive limits on cosmological WIMP

- Two types of "extreme" limits (conservative and optimistic)
- Min/Max Galactic substructure considered to gauge uncertainty

- Strongest Fermi-LAT limits in the >-5 TeV range
- Good sensitivity to WIMPs in 10-100 GeV range potentially offer a possibility to check the signal detected elsewhere

2014-09_CTA_FermiDM.pptx

- Several groups showed evidence for a narrow spectral feature at ~ 130 GeV near the Galactic Center (GC)
- (E.g., Weniger+12) Over 4σ, S/N>30%, up to ~60% in optimized region of interest

- Use full MC to get Fermi-LAT energy dispersion
- Previously modeled line with a triple Gaussians (1D PDF)
- Updated analysis add a 2nd dimension to line model P_E (probability that measured energy is close to the true value)
- Including P_E improves line sensitivity by ~15%

Evolution of line-like Feature near 133 GeV

- 1) 1D PDF, unreprocessed data (public data)
 - 4.5 σ (local) 1D fit at 130 GeV
- 2) 1D PDF, reprocessed data (better energy calibration)
 - 4.1 σ (local) at 133 GeV
- 3) 2D PDF, reprocessed data
 - 3.3σ (local) at 133 GeV (Energy dispersion in data is narrower than expected when P_E is taken into account)

Gamma-ray Space Telescope

4 year data, look in r=3deg from GC

27/30

2014-09_CTA_FermiDM.pptx Search 133 GeV in Earth Limb Data

- Earth Limb is bright and well understood
 - γs are from CR interaction with atmosphere
 - Can be used to study instrumental effects
- Need to cut on time when the LAT was pointing at the limb
- Have made changes to increase our Limb dataset
 - Pole-pointed observation each week (2012 Oct-2013 Oct)
 - Extended target of opportunity (tracing Limb while target is occulted)
- Excess is seen (likely due to dips in efficiency below/above 130 GeV)

• Not at the level of GC (S/N_{limb}~15% while S/N_{GC}=30-60%)

More data and study are needed to clarify the origin^a of 133 GeV feature (physical or systematic)

T. Mizuno et al.

Space Telescope

- dSphs are promising targets for DM search. Sensitivity is expected to be improved
 - more data, more dSphs, improved response
- Pass 8 is a comprehensive revision of the Fermi-LAT response
- Impact on scientific analysis (including DM search)
 - increased energy range (new mass parameter space)
 - Increased effective area (flux sensitivity)

- γ-ray observation is a powerful probe to investigate the DM property
- No significant detection of the signal yet
 - (130 GeV line not significant globally with reprocessed data and new Edisp model. Significance has declined since 2012 Spring)
- Constraints on the nature of DM have been placed (dSphs, IGRB)
 - start to reach thermal-relic cross section
- Future improvement of Fermi-LAT study (more data/dSphs and improved response) and CTA will cover WIMP mass of 10 GeV-1 TeV with good sensitivity

Thank you for your Attention

- Nolan et al. 2012, ApJS 199, 31
- Atwood et al. 2009, ApJ 687, 1071
- Baltz et al. 2008, JCAP 7, 13
- Abdo et al. 2010, PRL 104, 091302
- Pieri et al. 2011, PRD 83, 023518
- Wilkinson et al. 2006, Messenger 124, 28
- Ackermann et al. 2014, PRD 89, 042001
- Doro et al. 2013, Astroparticle Physics 43, 189
- Abdo et al. 2010, PRL 104, 101101
- Sánchez-Conde and Prada 2014, MNRAS 442, 2271
- Prada et al. 2012, MNRAS 423, 3018
- Sefusatti et al. 2014, MNRAS 441, 1861
- Weniger et al. 2012, JCAP 8, 7
- Ackermann et al. 2012, PRD 86, 2012
- Ackermann et al. 2013, PRD 88, 082002

2014-09_CTA_FermiDM.pptx

Backup Slides

US PI: Peter Michelson (Stanford) ~400 Scientific Members Cooperation between NASA and DOE, with key international contributions from France, Italy, Japan and Sweden. Project managed at SLAC.

- Use Lγ-L_{IR} scaling to estimate contribution
- Star-forming galaxies account for 4-23% of the EGB (~60% at the maximum if we add Blazars and SFGs)

 Radio galaxies can account for ~25% (e.g., Inoue+11). Still some room for other source type or truly diffuse emission.

Example of DM signal (for extragalactic gamma-ray background)

2014-09_CTA_FermiDM.pptx Stacking Analysis with Old Response (Pass6)

Stacking analysis using 10 dSphs and 2 years data
 – conservative limit on DM cross section (no "boost factor")

Space Telescope

Name	l (degree)	b (degree)	d (kpc)	$\overline{\log_{10}(J)}$ $\log_{10}[\text{GeV}]$	$\sigma^{2} \text{ cm}^{-5}$])
Bootes I	358.08	69.62	60	17.7	0.34
Carina	260.11	-22.22	101	18.0	0.13
Coma Berenices	241.9	83.6	44	19.0	0.37
Draco	86.37	34.72	80	18.8	0.13
Fornax	237.1	-65.7	138	17.7	0.23
Sculptor	287.15	-83.16	80	18.4	0.13
Segue 1	220.48	50.42	23	19.6	0.53
Sextans	243.4	42.2	86	17.8	0.23
Ursa Major II	152.46	37.44	32	19.6	0.40
Ursa Minor	104.95	44.80	66	18.5	0.18

Ackermann+11, PRL 107, 241302 (CA: Cohen-Tanugi, Conrad, Garde)

 M_{WIMP} >=20 GeV to satisfy $\langle \sigma v \rangle$ =3x10⁻²⁶ cm³ s⁻¹ Rule out models with generic cross section using γ -rays <u>for the first time</u> T. Mizuno et al. 36/30 2014-09_CTA_FermiDM.pptx Stacking Analysis with New Response (Pass7)

- Update analysis with Pass 7
 - take account of an improved understanding of the instrument

• Use new response (P6->P7) and redo the analysis

• This leads to a statistical reshuffling of γ -ray-classified events (only ~50% events are common in two dataset above 10 GeV)

Two limits are statistically consistent

dSphs still constrain generic cross section for M_{WIMP}<=10 GeV and will remain a prime target for DM search

T. Mizuno et al.

Space Telescope

2014-09_CTA_FermiDM.pptx **Evolution of line-like Feature near 135 GeV** Dermi Gamma-ray Space Telescope

Since Spring 2012, the significance of the feature has declined

T. Mizuno et al.

(http://fermi.gsfc.nasa.gov/ssc/proposals/alt_obs/white_papers_eval.html) 38/30

- Another recent and complementary DM search for MW halo
 - Search for continuous emission from DM annihilation/decay in the smooth MW halo

Analyze bands 5deg off the plane

 decrease astrophysical BG
 mitigate uncertainty from inner slope of DM density profile

 Two approaches:

 1) more conservative - assume all

P 1) more conservative - assume an emission are from DM (no astrophysical BG)
 > 2) more accurate - fit DM source and astrophysical emission simultaneously

Ackermann+12, ApJ 761, 91 (CA: Conrad, Yang, Zaharijas, Cuoco)

39/30

- Assume all γ -rays are from DM and give upper limits
 - conservative, robust to uncertainty
- Expected DM counts (n_{DM}) compared to observed counts (n_{data}) and 3σ upper limit are set using (in at lease one energy bin)

$$n_{DM} - 3\sqrt{n_{DM}} \ge n_{data}$$

2014-09_CTA_FermiDM.pptx

DM Halo Search: Method II

 Disentangle DM signal from foreground by utilizing spatial and spectral shapes (good diffuse model is important)

42/30

- Modeling the astrophysical emission improves DM constraints by a factor of ~5
- w/ astrophysical BG, the limit constrains the thermal relic cross section for <u>WIMP with mass > 30 GeV</u> (comparable to dSphs)

- e⁺/e⁻ is not compatible with a standard scenario (2ndary production)
 - Additional e⁻/e⁺ sources (astrophysical or exotic) can provide a good fit to Fermi CRE and e⁺/(e⁻ + e⁺)

