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§1 y-ray Pulsar Observations

Large Area

After 2008, LAT aboard Fermi has detected Telescope
more than 117 pulsars above 100 MeV. e

Fermi/LAT point sources (>100 MeV)
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Pulsed broad-band spectra of young pulsars
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Pulsed broad-band spectra of young pulsars

®High-energy (>100 MeV) ab I
photons are emitted mainly '

via curvature process by
ultra-relativistic e*’s.

VIS

®However, > 20 GeV, Inverse-Compton scatterings
(ICS) by the cascaded e*’s contribute.

VERITAS MAGIC
Sensitive in 50 GeV - 50 TeV Sensitive Iin 25 GeV — 30 TeV




§2 Pulsar Emission Models

Let consider how and where such
incoherent, high-energy photons
are emitted from pulsars.




§2 Pulsar Emission Models

e

If copious charges are (somehow) supplied, they realize a
force-free magnetosphere, E-B=0, and corotate with the
magnetosphere under the corotational electric field,

E, =—-c1(2xr)xB.

Magnetic
Field Lines

Charges corotate
by E, X B drift,

Vo = D Xr.




§2 Pulsar Emission Models

If copious charges are (somehow) supplied, they realize a
force-free magnetosphere, E-B=0, and corotate with the
magnetosphere under the corotational electric field,

E, =—-c1(2xr)xB.

Decoupling E into E | and E,,_..rotste WE Obtain from the
Maxwell eq.

- (E Iy E non—corotate) — 47'[,0 )
that is,

V-E non—corotate 477:(10 —p GJ)1

where p,=V-E,~— 2 -B.

If o deviates from p; In some region,
E,=E - B/B arises around that region.

non—corotate



§2 Pulsar Emission Models

If copious charges are (somehow) supplied, they realize a
force-free magnetosphere, E-B=0, and corotate with the
magnetosphere under the corotational electric field,

Thus, the problem reduces to ...

“Where and how does the charge deficit
(Ip] <lpeil) appear?”

This vacuum gap (E;#0) should also account for
the supply of charges that realizes the
force-free magnetosphere outside of it.

If o deviates from p; In some region,
E,=E - B/B arises around that region.

non—corotate



§2 Pulsar Emission Models

Early 80’s, the polar-cap (PC) model was proposed.
(Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles.




§2 Pulsar Emission Models

Early 80’s, the polar-cap (PC) model was proposed.
(Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles.

However, the emission solid angle (AQ «1 ster) was too
small to reproduce the wide-separated double peaks.

Wide-separated
., double peaks

—l




§2 Pulsar Emission Models

P

Early 80’s, the polar-cap (PC) model was proposed.
(Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles.

However, the emission solid angle (AQ «1 ster) was too
small to reproduce the wide-separated double peaks.

Moreover, the detection of VHE (>20GeV) pulsed
emission from the Crab pulsar, which should avoid strong
magnetic absorption, clearly rules out PC emissions.

Thus, a high-altitude emission drew attention.



§2 Pulsar Emission Models

Higher-altitude emission models concentrate on ...

® slot-gap (SG) model (Muslimov & Harding 2003, 2004)

® pair- starved polar-cap (PSPC) model (Venter + 2009)

® outer gap (OG) model (Cheng + 1986; Romani 1996)

® striped-wind synchrotron (SWS) model (Petri 2013)

® wind-inverse-Compton (WIC) model (Aharonian + 2012)

SG, PSPC models: e~ are extracted as in PC model
OG model: e*’s created by y-y coll. and accelerated by E,
SWS model: HE pulsed photons emitted from current sheet

WIC model: VHE pulsed photons emitted via ICS by
ultra-relativistic e*’s accelerated at r< 50 R,



§2 Pulsar Emission Models

S

SG model, classic OG models:
have very thin meridional thickness (w < 1),
reproduce only 10'~10< L~ (KH 2008 ApJ 688, L25)

Therefore, the PSPC model (w<1.0) was proposed.

However, the PSPC model contradicts with div(B)=4rzp, In

the same way as the SG model.

(KH 2011, High Energy Emission from
Pulsars and Their Systems, p. 117-37)

Thus, as long as the emissions inside LC are concerned, the
modern OG model (w>0.1), survives as the only model that
quantitatively describes the pulsed HE/VVHE emissions.

However, in all the models above, B configuration is not
solved consistently with the magnetospheric currents.



§2 Pulsar Emission Models

P

How about the emissions outside the light cylinder?

In SWS or WIC model, B configuration is consistently
solved with magnetospheric electric currents, whereas
particle creation & radiation are artificially set up.



§2 Pulsar Emission Models

S— e —————————————n —

The B structure can be solved e.g., by the PIC simulation.

This approach is valid for coherent pulsar radio emissions.

However, such exact treatment are unnecessary to study
Incoherent high-energy (> 0.001 eV) emissions, because
(1) plasma collective effects are negligible as v>v; ..,
(2) spatial size >1000 km for typical young pulsars.
The macroscopic PIC cell size disfavors such
non-localized phenomena.



§2 Pulsar Emission Models

S

It 1s, therefore, possible to investigate incoherent pulsar
HE/VHE emissions by solving the set of

(1) e* Boltzmann equations,

(2) radiative transfer equation, and
(3) the Poisson equation for the electro-static potential
(1.e., one of the Maxwell equations),

Instead of solving the B field configuration near the light
cylinder, we parameterize how the vacuum dipole B field is
deformed into monopole-like, and compare the prediction

with the y-ray observations.



‘§2 Pulsar Emission Models

e ——

As a model of high-altitude
emissions, we investigate the
outer gap scenario.

Cheng, Ho, Ruderman
(1986, ApJ 300, 500)

Emission altitude
~ light cylinder
—> hollow cone emission
(AQ > 1 ster)

OG model was further

developed by including

special relativistic effects.
Romani (1996, ApJ 470, 469)




‘§2 Pulsar Emission Models

As a model of high-altitude
emissions, we investigate the
outer gap scenario.

Cheng, Ho, Ruderman
(1986, ApJ 300, 500)

Emission altitude
~ light cylinder
—> hollow cone emission
(AQ > 1 ster)

op LWL PITWI IPl  IP2  Bridge LW2 P2 TW2 opP

2 600 : :
2 400 Successfully explained wide-

separated double peaks.

- OG model became promising.

one NS rotation



§3 Modern Outer-gap Model: Formalism

P

| quantify the classic OG model by simultaneously
solving the pair-production cascade in a rotating NS

magnetosphere:

e*’s are accelerated by E, <

l

Relativistic e*/e” emit y-rays via
synchro-curvature, and IC processes

|

v-rays collide with soft photons/B to n
materialize as pairs in the accelerator




§3 Modern OG Model: Formalism

P

Poisson equation for electrostatic potential y :

_y? _82‘;”_529”_52'7”

= =4r(p— ,
W aXz ayg 822 (IO IOGJ)
where
B
c__ 9% __QB
X ' Per = 27C - X

p)=efdy[dz[N, (%7, 2) = N_(X.7, ) [*Pon (),

N, /N_: distrib. func. of e*/e”
v . Lorentz factor of e*/e”
y . pitch angle of e*/e”

X=(X,VY,2).



§3 Modern OG Model: Formalism

P

Assuming 0,+Q0,=0, we solve the e*’s Boltzmann egs.

ON, | - v ON, |
= ( - ] 8p S,C+Ssc+jadvjhv
together with the radiative transfer equation,
dl .
— _aV IV + JV
di

N,: positronic/electronic spatial # density,

E,: mangnetic-field-aligned electric field,

S,c: ICS re-distribution function, dw: solid angle element,
|,: specific intensity, | : path length along the ray
a,. absorption coefficient, j : emission coefficient




§3 Application to the Crab pulsar

This numerical scheme can be applied to arbitrary
pulsars. Today, we apply it to the Crab pulsar.

Recent force-free, MHD, and PIC simulations suggest
that B field approaches monopole-like near and
beyond the light cylinder.

Thus, we consider
vacuum, rotating dipole B
+ b * split-monopole B (Michael’74)

b=0: pure dipole
b=1 Bdipole:BmonopoIe @ LC



§3 Application to the Crab pulsar

P

First, let us see why the double-peak light curve Is formed.
Examine the vacuum (i.e., non-screened) solution of E,.

E, for vacuum, rotating dipole B figld (b=0 case)

O : : Null surface !

D o Leading side -

5 Forms P1 1%
E N S
N o  Max(E,) is projected >
& on last-open B surface. ©

S N ©
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o

o N

£ |

0 0.5 1 1.5 2

distance along field line / LC radius



§3 Application to the Crab pulsar

E, Is governed by the pg; distribution, which is
solely determined by B geometry.
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KH 2014,
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MNRAS 442, .43



§3 Application to the Crab pulsar

E, Is governed by the pg; distribution, which is
solely determined by B geometry.
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§5 Application to the Crab pulsar

P

E, Is heavily screened by the produced pairs. Nevertheless,
the essential features of P1/P2 formation is unchanged.

- =
— . ' >
o N 3-D gap solution (non-vacuum) .
= O
< - ] x
g Max(E,) are =
N o projected on
O
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§4 Results: pulse profiles

The resultant y-ray light curves changes as a function of
the observer’s viewing angles:

energy flux / phase energy flux / phase
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§4 Results: pulse profiles
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§4 Results: pulse profiles

= b=0 (pure rotating vacuum dlpole)

2 b=0.5 (dipole + weak monopole
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§4 Results: pulse profiles
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§4 Results: pulse profiles

= b=0 (pure rotating vacuum dlpole) ¢ b=0.5 (dipole + weak monopole)
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§8 Results: Application to the Crab pulsar

Total and phase-resolved spectrum for b=0, a=60°, /;—950
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§8 Results: Application to the Crab pulsar

Total and phase -resolved spectrum for b=0, a=60°, \/;—100O
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§8 Results: Application to the Crab pulsar

Total and phase-resolved spectrum for b=0, «=60°, \/;—105O
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Summary

P

m\\e can predict the HE/VHE emissions from pulsar outer
magnetospheres, by solving the set of Maxwell (divE=4rp)
and e* Boltzmann egs., radiative transfer eq., if we specify
P, dP/dt, ¢, KT s

incl
B The solution corresponds to a quantitative extension of
classic outer gap model. We no longer have to assume the
gap geometry, E, e* distribution functions.

B Moderate B deformation (b~0.5) near LC is preferable to
reproduce P1/P2 ratio and relatively large peak separation.

HMBridge emission reduces due to strong screening.

BmFor=120° (as inferred from X-ray torus obs.), Crab
pulsar’s y-ray peak separation becomes < 120° for a<65°,
whereas it should be ~140°. (a=70°-80° cases are on-going.)

mif £=100° o=60° with b=0 (dipole) gives an acceptable fit.




