活動銀河ジェット・ウィンドからの ガンマ線(と超高エネルギー宇宙線) 井上進 (MPI für Physik/ICRR)

- hadronic interpretation for UHE-frequency-peaked BL Lacs (extreme blazars)
 with Matteo Cerruti, Andreas Zech, Catherine Boisson
- 2. gamma-rays (+UHECRs?) from ultra-fast outflows (AGN winds) with Ruoyu Liu

hadronic interpretation for UHE-frequency-peaked BL Lacs (extreme blazars)

Matteo Cerruti, Andreas Zech, Catherine Boisson, SI MNRAS, submitted

UHF-peaked BL Lacs (extreme blazars)

stochastic electron acceleration? Lefa+ 11, Tramacere+ 11, Asano+ 14...

intergalactic CR-induced cascades Essey & Kusenko 12, Murase+ 12, Tavecchio 14...

leptonic+hadronic emission model

Cerruti, Zech, Boisson, SI, MNRAS submitted; see also arXiv:1111.0557

leptonic processes: updated version of Katarzynski+01

- one zone synchrotron+SSC
- electron spectrum: power-law injection $K_e \gamma_e^{-\alpha e}$ ($\gamma_{e,min} < \gamma_e < \gamma_{e,max}$) + break via syn.+SSC losses
- internal yy pair production

hadronic processes

- proton synchrotron
- photomeson interactions (SOPHIA)
- sync.+IC emission by all secondary pairs $(p\gamma + \gamma\gamma)$
- muon synchrotron
- Bethe-Heitler pair production
- proton spectrum: power-law injection $K_p \gamma_p^{-\alpha p}$ (1< $\gamma_p < \gamma_{p,max}$), $\alpha_p = \alpha_e$ break via syn. losses max via accel vs radiative/adiabatic losses

parameters: δ , R, B, $\alpha_e = \alpha_p$, $\gamma_{e,min}$, $\gamma_{e,max}$, K_e , K_p EBL: Franceschini+ 08

leptonic+hadronic emission: example **Mrk 421** log(t [s])

interpretation possible with plausible range of jet luminosities

interpretation possible with plausible range of jet luminosities

UHF BLL: model parameters

	1ES 0229+200	1ES 0347-121	RGB J0710+591	1ES 1101-232	1ES 1218+304
proton syn	nchrotron				
$\gamma_{e,min}$ [10 ²]	1.6 - 20	3.2 - 38	0.01	4.3 - 50	3.4 – 27
$\alpha_{e,1} = \alpha_{p,1}$	1.3	1.7	1.35	1.7	1.7
$\gamma_{p,max}[10^9]$	4.8 - 57	4.8 - 56	3.9 – 47	4.8 - 56	3.5 - 26
pγ cascade	e+SSC				
$\gamma_{e,min} [10^2]$	0.01	47 – 108	0.01	100 - 150	37 - 103
$\alpha_{e,1} = \alpha_{p,1}$	1.3	1.7	1.5	1.7	1.7
$\gamma_{p,max}[10^9]$	0.06 - 0.3	0.15 - 0.45	0.1 - 0.15	0.6 - 1.0	0.08 - 0.4

interpretation possible with plausible γ_{min} , jet power BUT hard proton spectra required $\alpha_p < 2$ -> CR-modified shock? Reconnection? What distinguishes UHF BLLs?

 $E_{p,max}$ <~10¹⁷ eV, insufficient for highest E UHECRs

gamma-rays (+UHECRs) from ultra-fast-outflows (UFOs ~ AGN winds) Ruo-Yu Liu, SI, in prep.

ultra-fast outflows (UFOs) in AGN blue-shifted X-ray absorption lines

- ~40 % of all AGNs
 both radio-quiet/radio-loud
- fast outflow: v~0.05-0.3c
- highly ionized: Fe XXV/XXVI $\xi_i \sim 10^3 - 10^6 \text{ erg s}^{-1} \text{ cm}$
- high column density: $N_{\rm H} \sim 10^{22} 10^{24} \text{ cm}^{-2}$
- variable: t_{var}>~ks

ultra-fast outflows (UFOs) in AGN

- mechanical/thermal feedback on host galaxy gas

-> origin of M_{BH} - σ_{bulge} correlation?

- particle acceleration and nonthermal emission?

radio-quiet AGN with UFO ESO 323-G77

2/120 Seyferts with GeV association -> chance coincidence? correlation with Auger UHECR event Nemmen+ 10, Jiang+ 10

known (relatively slow) UFO -> UFO as UFO?

UFO shocks: electron & proton acceleration

Liu & SI in prep.

$$\begin{split} M_{BH} = & 10^8 \text{ M}_{sun}, \text{ v}_{out} = & 0.1 \text{ c}, L_{kin} = & 10^{45} \text{ erg/s} \sim & 0.1 \text{ L}_{edd} \\ B^2 / & 8\pi = & \epsilon_B L_{kin} / & 4\pi \text{ R}^2 \text{ v}_{out} \end{split}$$

dynamical $t_{dyn} = R/v_{out}$, $t_{lc} = R_s/c = 500 \text{ s}$ acceleration $t_{acc} \sim 10 (v_s/c)^{-2} \text{ E/ceB}$

electron loss $t_{esyn}=3 m_e^2 c^3/4 \sigma_T u_B E_e$ $t_{eIC}=3 m_e^2 c^3/4 \sigma_T u_{ph} E_e$

proton loss $t_{pp} = (\kappa_{pp} \sigma_{pp} n_p c)^{-1}$ $t_{p\gamma} \propto \int \kappa_{p\gamma}(x) \sigma_{p\gamma}(x) x \, dx \, \int n_{ph}(x) dx)^{-1} x = hv/m_e c^2$

electrons up to ~1 TeV, cooling for ~<10 MeV NB: $\gamma\gamma$ protons up to ~3x10¹⁸ eV (Fe up to ~10²⁰ eV)

UHECR events: correlations with LAT AGNNemmen+ 10Blue: Auger events E>57 EeValso Jiang+ 10

Blue: Auger events E>57 EeV Black: AGN with z<0.048 (GZK) in Auger FOV 5.4σ correlation on 17deg scale

radio-loud AGNs with UFOs

Kataoka+11

2/18 broad-line radio galaxies detected at GeV

stronger than average core radio emission
-> jet emission at intermediate viewing angle?

50+-20% radio-loud galaxies found to have UFOs Tombesi+ 14

まとめ

hadronic emission from UHF-peaked BL Lacs

- SSCモデルでは異常な $\gamma_{e,min}$, δ の値が必要
- proton synchrotron or py cascade+SSCによる説明が可能 無理のない_{ye,min}, LでOK
 - ハードな陽子スペクトルは必要 -> 加速機構?

UHECRは困難

- 将来的に時間分解スペクトルで識別 -> CTA

gamma-rays (+UHECRs) from ultra-fast outflows

- ジェットの有無に関わらず、AGNの多く(4割)で 高速(光速の数割)、強力(L_{Edd}の数割)のoutflow
- 母銀河へのfeedbackと共に粒子加速・非熱的放射の可能性
- UFO伴うSeyfert ESO323-G77のGeV γ(?)説明可能 (+UHECRとの相関?)

UFO伴う電波銀河 3C120などのGeV γも? -> CTA他今後のさらなる観測に期待