### Current status and future prospects for ultrahigh energy cosmic rays from a theoretical point of view

### Hajime Takami KEK, JSPS Fellow







### 1. Introduction

2. Review

3. Future Prospects

4. Summary

### **1. Introduction**

2. Review

3. Future Prospects

4. Summary

## Cosmic rays ~ origin ~



Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

## Difficulty in Identifying Cosmic-ray Origin

#### Charge and cosmic magnetic fields



### Highest Energy Cosmic Rays as a Good

1. Deflection can be minimized.

$$\theta(E,D) \simeq 2.5^{\circ} Z \left(\frac{E}{10^{20} \text{ eV}}\right)^{-1} \left(\frac{D}{100 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{1 \text{ nG}}\right) \left(\frac{\lambda}{1 \text{ Mpc}}\right)^{1/2}$$

- 2. Greisen-Zatsepin-Kuz'min horizon
  - low-background observations

## Propagation of UHECRs

Photopion production  $p\gamma \rightarrow n\pi^+ \rightarrow ne^+ \nu_\mu \nu_e \bar{\nu}_\mu$   $p\gamma \rightarrow p\pi^0 \rightarrow p + 2\gamma$ E > 6 x 10<sup>19</sup> eV for CMB

 $\mathcal{V}_{l}$ 

 $\mathcal{V}_{\epsilon}$ 

IGMF

CMB / IRB

 $\pi^{\pm}$ 

Bethe-Heitler Pair Creation  $p\gamma \rightarrow pe^+e^-$ E > 6 x 10<sup>16</sup> eV for CMB

CMB

GMF

8

 $\begin{array}{c} \textbf{Photodisintegration} \\ N\gamma \rightarrow (N-1) + p/n \end{array}$ 

### Mean Free Path

#### Mean free path drastically decreases at the highest energies.

Iron

**Proton** 



### Galaxies in the Local Universe

D < 100 Mpc



### **UHECR Source Candidates**



e.g., <u>Biermann & Strittmatter, ApJ 322 (1987) 643</u>, <u>Takahara, PTP 83 (1990) 1071</u>, <u>Rachen & Biermann, A&A 272 (1993) 161</u>, <u>Norman et al., ApJ 454 (1995) 60,</u> <u>Farrar & Gruzinov, ApJ 693 (2009) 329,</u> <u>Dermer et al., New J. Phys. 11 (2009) 065016</u> <u>Pe'er et al., PRD 80 (2009) 123018,</u> <u>HT & Horiuchi, Aph 34 (2011) 749,</u> <u>Murase, Dermer, HT, Migliori, ApJ 749 (2012) 63</u>



e.g., <u>Blasi et al., ApJ 533 (2000) L123,</u> Arons, ApJ 589 (2003) 871, Kotera, PRD 84 (2011) 023002, Fang et al., ApJ 750 (2012) 118







e.g., <u>Waxman, PRL 75 (1995) 386</u>, Vietri, ApJ 453 (1995) 883, Murase et al., PRD 78 (2008) 023005, Wang et al., ApJ 677 (2008) 432



e.g., <u>Norman et al., ApJ 454 (1995) 60</u>, <u>Kang et al., ApJ 456 (1996) 422</u>, Inoue et al., astro-ph/0701167

## Why do we focus on the highest energies?

- · Small deflections in cosmic magnetic fields
- $\cdot$  GZK limitation to source candidates in local Universe
- · Few theoretical source candidates

### 1. Introduction

2. Review

3. Future Prospects

4. Summary

### or in Utah

39.3°N, 112.9°W ~**1400 Ctrum Surface Detector** (SD)

507 plastine is beet for and Telescope Array are consistent 1.2 km spacing within systematic errors. 700 km<sup>2</sup>



### **Spectral Modeling**

#### Two interpretations are possible.



### **Shower Maximum Measurements**



15/48

### **Comparison between Experiments**

Auger and TA are compatible within systematic uncertainties.



### Anisotropy Signals by Auger



The anisotropy signals are marginal.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### Anisotropy Signals by TA

E > 5.7 x 10<sup>19</sup> eV 25 events

![](_page_17_Figure_2.jpeg)

Abu-Zayyad et al., ApJ 757 (2012) 26

### **Telescope Array Hot Spot**

3.4  $\sigma$  excess using 20° circles

![](_page_18_Figure_2.jpeg)

No clear source candidate in this direction

### **Anisotropy versus Chemical Composition**

# Even stronger anisotropy by protons appears at > E / Z, if anisotropy produced by nuclei with Z appears at > E.

10 8 E > 55 EeV 60 E > 9.2 EeV 6 40 (Z = 6)N<sub>obs</sub> - N<sub>iso</sub> N<sub>obs</sub> - N<sub>iso</sub> 20 -20 -40 68% dispersion 68% dispersion 95% dispersion 95% dispersion -6 -60 % dispersion dispersion data data -8 -80 10 20 25 0 5 15 30 10 15 20 25 30 5 0 Angular distance to Cen A (degrees) Angular distance to Cen A (degrees) Abreu et al., JCAP 06 (2011) 022 150 300 E > 4.2 EeV E > 2.1 EeV 100 200 (Z = 13)(Z = 26)50 100 N<sub>obs</sub> - N<sub>iso</sub> N<sub>obs</sub> - N<sub>iso</sub> -50 -100 68% dispersion 68% dispersion -100 -200 95% dispersion 95% dispersion 99 7% dispersion 99.7% dispersion data data -150 -300 20 0 5 10 15 25 30 5 10 15 20 25 30 0 Angular distance to Cen A (degrees) Angular distance to Cen A (degrees)

Lemoine & Waxman, JCAP 11 (2009) 009

![](_page_20_Picture_0.jpeg)

• Proton-dominated composition at the highest energies

• Heavy-nucleus-dominated in a wide energy range

e.g., <u>Horiuchi et al., ApJ 753 (2013) 69</u> (GRBs), <u>Fang et al., 03 (2013) 010 (</u>pulsars)

• The anisotropy is a statistical fluctuation.

### Source Number Density @ the Highest Energies

#### Strong candidates are ruled out as main contributors.

![](_page_21_Figure_2.jpeg)

- Proton-dominated composition (weak deflection cases)
- Steady sources
- The first Auger public data set

| Objects            | ns [Mpc   |
|--------------------|-----------|
| Bright galaxy      | 1.3 x 10  |
| Seyfert galaxy     | 1.25 x 10 |
| Dead Quasar        | 5 x 10    |
| Fanaroff-Riley I   | 8 x 10    |
| Bright quasar      | 1.4 x 10  |
| Colliding galaxies | 7 x 10    |
| BL Lac objects     | 3 x 10    |
| Fanaroff-Riley II  | 3 x 10    |

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### Source Number Density

![](_page_22_Figure_1.jpeg)

- Pure-iron case (maximal deflection case)
- Steady sources
- The second Auger public data set mocked

HT, Inoue, Yamamoto, Aph 35 (2012) 767

### Source Number Density

![](_page_23_Figure_1.jpeg)

- Uniform source distribution
- $\Delta E$ ,  $\Delta \alpha$  fluctuations included
- Available as long as the deflection angle is smaller than  $\boldsymbol{\alpha}$

The Pierre Auger Observatory, JCAP, 05 (2013) 009

## Luminosity Requirement

$$L_{\rm tot} > 2 \times 10^{45} \; \frac{\theta_{\rm F}^2 \beta^3 \Gamma^2}{Z^2} \left(\frac{E}{10^{20} \; {\rm eV}}\right)^2 \; {\rm erg \; s^{-1}}$$

<u>Norman et al., ApJ 454 (1995) 60</u> <u>Blandford, Physica Scripta, T85 (2000) 191</u> Waxman, Pramana 62 (2004) 483

![](_page_24_Figure_3.jpeg)

#### Steady objects with $L_{bol} > 10^{45}$ erg are rare within the GZK radius, namely << 10<sup>-4</sup> Mpc<sup>-3</sup>.

e.g., Zaw et al., ApJ 696 (2009) 1218

### **UHECR Source Candidates**

![](_page_25_Picture_1.jpeg)

e.g., <u>Biermann & Strittmatter, ApJ 322 (1987) 643</u>, <u>Takahara, PTP 83 (1990) 1071</u>, <u>Rachen & Biermann, A&A 272 (1993) 161</u>, <u>Norman et al., ApJ 454 (1995) 60,</u> <u>Farrar & Gruzinov, ApJ 693 (2009) 329,</u> <u>Dermer et al., New J. Phys. 11 (2009) 065016</u> <u>Pe'er et al., PRD 80 (2009) 123018,</u> <u>HT & Horiuchi, Aph 34 (2011) 749,</u> <u>Murase, Dermer, HT, Migliori, ApJ 749 (2012) 63</u>

![](_page_25_Picture_3.jpeg)

e.g., <u>Blasi et al., ApJ 533 (2000) L123,</u> Arons, ApJ 589 (2003) 871, Kotera, PRD 84 (2011) 023002, Fang et al., ApJ 750 (2012) 118

![](_page_25_Figure_5.jpeg)

![](_page_25_Figure_6.jpeg)

![](_page_25_Picture_7.jpeg)

e.g., <u>Waxman, PRL 75 (1995) 386</u>, Vietri, ApJ 453 (1995) 883, Murase et al., PRD 78 (2008) 023005, Wang et al., ApJ 677 (2008) 432

![](_page_25_Figure_9.jpeg)

e.g., <u>Norman et al., ApJ 454 (1995) 60</u>, <u>Kang et al., ApJ 456 (1996) 422</u>, Inoue et al., astro-ph/0701167

## **Summary on Current Status**

#### Spectrum

GZK steepening + dip/ankle are established.

#### Composition

|                                 | Anisotropy                          | Interaction model |
|---------------------------------|-------------------------------------|-------------------|
| Composition<br>at the highest E | Proton-dominated                    | Heavy nuclei      |
| Anisotropy                      | Protons                             | Statistical error |
| Galactic-to-Xgal transition     | Proton-dip<br>(p-) ankle transition | Ankle transition  |
| etc.                            | Interaction models may be modified. |                   |

\* Compromised scenario: heavy in a wide range + very weak magnetic fields

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

## **Summary on Current Status**

#### Source properties

- Steady sources
  - proton-dominated  $>\sim 10^{-4}$  Mpc<sup>-3</sup>
  - heavy-nucleus-dominated >~ 10<sup>-6</sup> Mpc<sup>-3</sup>
- · If proton-dominated composition,
  - the luminosity requirement  $\rightarrow$  transient for jet-sources
  - Strong evolution is ruled out by neutrinos.

### 1. Introduction

2. Review

**3. Future Prospects** 

4. Summary

## What is the Next Step?

How / why are particles accelerated up to such extreme high energies?

![](_page_29_Picture_2.jpeg)

Where are particles accelerated up to such extreme high energies?

![](_page_29_Picture_4.jpeg)

What is the nature of UHECR sources?

to establish strategies to unveil the sources

### **Source Classification**

#### Proton / Steady

#### Proton / Transient

Heavy / Steady

Heavy / Transient

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### **Transient Sources**

**Time-delay and time-profile dispersion** 

$$t_d(E,D) \simeq 1.5 \times 10^5 Z^2 \left(\frac{E}{10^{20} \text{ eV}}\right)^{-2} \left(\frac{D}{100 \text{ Mpc}}\right)^2 \left(\frac{B}{1 \text{ nG}}\right)^2 \left(\frac{\lambda}{1 \text{ Mpc}}\right) \text{ yr}$$

![](_page_31_Figure_3.jpeg)

#### More sources are observed at lower energy that at higher energy.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### **Evidence for Transient Sources**

Strong energy dependence of apparent source number density

![](_page_32_Figure_2.jpeg)

HT & Murase, ApJ 748 (2012) 9

### Constraints on $\rho_s$ and Energy Budget

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

 $\cdot \tau_{min}$  : GMF, EGMF surrounding sources  $\cdot \tau_{max}$  : GMF, EGMF surrounding sources, IGMF

| Source               | Typical Rate $\rho_0$ (Gpc <sup>-3</sup> yr <sup>-1</sup> ) |
|----------------------|-------------------------------------------------------------|
| HL GRB               | ~0.1                                                        |
| LL GRB               | $\sim 400$                                                  |
| Hypernovae           | $\sim 2000$                                                 |
| Magnetar             | ~12000                                                      |
| Giant Magnetar Flare | $\sim 10000$                                                |
| Giant AGN Flare      | $\sim 1000$                                                 |
| SNe Ibc              | $\sim 20000$                                                |
| Core Collapse SNe    | 120000                                                      |

HT & Murase, ApJ 748 (2012) 9

![](_page_34_Figure_0.jpeg)

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

35/48

### What Can We Do for Composition?

- $\cdot \sqrt{s_{\rm pp}} = 433 \text{ TeV}$  collider required
- · Anisotropy measurements
- · Cosmogenic neutrinos

### Cosmogenic Neutrinos ~ Composition ~

![](_page_36_Figure_1.jpeg)

![](_page_37_Picture_0.jpeg)

TeV

# UHE (PeV-EeV)

PeV

![](_page_37_Picture_2.jpeg)

EeV

## IceCube 6 years data (2008-2014) all combined

![](_page_37_Figure_4.jpeg)

![](_page_38_Picture_0.jpeg)

# Hotspot 最高エネルギー宇宙線の異方性

データを20度の半径の円でoversampling

![](_page_38_Figure_3.jpeg)

Significance map

![](_page_38_Figure_5.jpeg)

- 最大のsignificance
  - 方向:R.A. = 146.7°, Dec. = 43.2°
  - 観測数:19 (19/72=26%)
  - 等方的分布の期待値:4.5 (4.5/72=6%)
  - Li-Ma significance:  $5.1\sigma$

 ・等方的な分布の場合に5.1σ以上の有 意度を得る偶然の確率:3.7x10<sup>-4</sup> (3.4σ)

• MC:15,20,25,30,35度の半径の円

### ApJ 790, L21 (2014)

5年のデータ

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

Hotspot +1年間

•2008年5月-2014年5月(6年間)

![](_page_39_Figure_4.jpeg)

• E > 5.7x10<sup>19</sup>eV: 72事象→87事象(+15)

• Hotspot内: 19事象→23事象(+4)

5年 +1年 (19/72~26%, 4/15~26%)

• 最大のLi-Ma significance:  $5.1\sigma \rightarrow 5.5\sigma \implies$  偶然の確率 =  $3.4\sigma \rightarrow 4.0\sigma$ 

## **Comparison with Galaxy Distribution**

![](_page_40_Figure_1.jpeg)

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### **Event Distribution from Specific Positions**

Auger - Cen A

#### **Telescope Array - Hotspot center**

![](_page_41_Figure_3.jpeg)

## **Angular Auto-correlation Functions**

![](_page_42_Figure_1.jpeg)

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### **Effects of Galactic Magnetic Fields**

![](_page_43_Figure_1.jpeg)

HT et al., in prep.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

44/48

### Isotropic Background + Source Contribution

Auger

![](_page_44_Figure_1.jpeg)

Telescope Array

HT et al., in prep.

Deflection is ~ 20°.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

### **Indicated Magnetic Fields**

#### Cosmological

$$\theta(E,D) \simeq 4.2^{\circ} Z \left(\frac{E}{6 \times 10^{19} \text{ eV}}\right)^{-1} \left(\frac{D}{100 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{1 \text{ nG}}\right) \left(\frac{\lambda}{1 \text{ Mpc}}\right)^{1/2}$$

#### Local

$$\theta(E,D) \simeq 18.6^{\circ} Z \left(\frac{E}{6 \times 10^{19} \text{ eV}}\right)^{-1} \left(\frac{D}{2 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{100 \text{ nG}}\right) \left(\frac{\lambda}{100 \text{ kpc}}\right)^{1/2}$$

### 1. Introduction

2. Review

3. Future Prospects

4. Summary

![](_page_47_Picture_0.jpeg)

#### **Current Status**

- Anisotropy versus chemical composition
- Transient sources?

#### **Future prospects**

# The nature of UHECR sources should be understood to establish strategies for source identification.

- Generation: steady or transient
- Composition: proton-dominated or heavy nuclei

### Anisotropy!

The hotspots indicates ~ 100 nG magnetic fields around the Milky Way — Multi-messenger!