Current status and future prospects for ultrahigh energy cosmic rays from a theoretical point of view

Hajime Takami KEK, JSPS Fellow

1. Introduction

2. Review

3. Future Prospects

4. Summary

1. Introduction

2. Review

3. Future Prospects

4. Summary

Cosmic rays ~ origin ~

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Difficulty in Identifying Cosmic-ray Origin

Charge and cosmic magnetic fields

Highest Energy Cosmic Rays as a Good

1. Deflection can be minimized.

$$\theta(E,D) \simeq 2.5^{\circ} Z \left(\frac{E}{10^{20} \text{ eV}}\right)^{-1} \left(\frac{D}{100 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{1 \text{ nG}}\right) \left(\frac{\lambda}{1 \text{ Mpc}}\right)^{1/2}$$

- 2. Greisen-Zatsepin-Kuz'min horizon
 - low-background observations

Propagation of UHECRs

Photopion production $p\gamma \rightarrow n\pi^+ \rightarrow ne^+ \nu_\mu \nu_e \bar{\nu}_\mu$ $p\gamma \rightarrow p\pi^0 \rightarrow p + 2\gamma$ E > 6 x 10¹⁹ eV for CMB

 \mathcal{V}_{l}

 \mathcal{V}_{ϵ}

IGMF

CMB / IRB

 π^{\pm}

Bethe-Heitler Pair Creation $p\gamma \rightarrow pe^+e^-$ E > 6 x 10¹⁶ eV for CMB

CMB

GMF

8

 $\begin{array}{c} \textbf{Photodisintegration} \\ N\gamma \rightarrow (N-1) + p/n \end{array}$

Mean Free Path

Mean free path drastically decreases at the highest energies.

Iron

Proton

Galaxies in the Local Universe

D < 100 Mpc

UHECR Source Candidates

e.g., <u>Biermann & Strittmatter, ApJ 322 (1987) 643</u>, <u>Takahara, PTP 83 (1990) 1071</u>, <u>Rachen & Biermann, A&A 272 (1993) 161</u>, <u>Norman et al., ApJ 454 (1995) 60,</u> <u>Farrar & Gruzinov, ApJ 693 (2009) 329,</u> <u>Dermer et al., New J. Phys. 11 (2009) 065016</u> <u>Pe'er et al., PRD 80 (2009) 123018,</u> <u>HT & Horiuchi, Aph 34 (2011) 749,</u> <u>Murase, Dermer, HT, Migliori, ApJ 749 (2012) 63</u>

e.g., <u>Blasi et al., ApJ 533 (2000) L123,</u> Arons, ApJ 589 (2003) 871, Kotera, PRD 84 (2011) 023002, Fang et al., ApJ 750 (2012) 118

e.g., <u>Waxman, PRL 75 (1995) 386</u>, Vietri, ApJ 453 (1995) 883, Murase et al., PRD 78 (2008) 023005, Wang et al., ApJ 677 (2008) 432

e.g., <u>Norman et al., ApJ 454 (1995) 60</u>, <u>Kang et al., ApJ 456 (1996) 422</u>, Inoue et al., astro-ph/0701167

Why do we focus on the highest energies?

- · Small deflections in cosmic magnetic fields
- \cdot GZK limitation to source candidates in local Universe
- · Few theoretical source candidates

1. Introduction

2. Review

3. Future Prospects

4. Summary

or in Utah

39.3°N, 112.9°W ~**1400 Ctrum Surface Detector** (SD)

507 plastine is beet for and Telescope Array are consistent 1.2 km spacing within systematic errors. 700 km²

Spectral Modeling

Two interpretations are possible.

Shower Maximum Measurements

15/48

Comparison between Experiments

Auger and TA are compatible within systematic uncertainties.

Anisotropy Signals by Auger

The anisotropy signals are marginal.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Anisotropy Signals by TA

E > 5.7 x 10¹⁹ eV 25 events

Abu-Zayyad et al., ApJ 757 (2012) 26

Telescope Array Hot Spot

3.4 σ excess using 20° circles

No clear source candidate in this direction

Anisotropy versus Chemical Composition

Even stronger anisotropy by protons appears at > E / Z, if anisotropy produced by nuclei with Z appears at > E.

10 8 E > 55 EeV 60 E > 9.2 EeV 6 40 (Z = 6)N_{obs} - N_{iso} N_{obs} - N_{iso} 20 -20 -40 68% dispersion 68% dispersion 95% dispersion 95% dispersion -6 -60 % dispersion dispersion data data -8 -80 10 20 25 0 5 15 30 10 15 20 25 30 5 0 Angular distance to Cen A (degrees) Angular distance to Cen A (degrees) Abreu et al., JCAP 06 (2011) 022 150 300 E > 4.2 EeV E > 2.1 EeV 100 200 (Z = 13)(Z = 26)50 100 N_{obs} - N_{iso} N_{obs} - N_{iso} -50 -100 68% dispersion 68% dispersion -100 -200 95% dispersion 95% dispersion 99 7% dispersion 99.7% dispersion data data -150 -300 20 0 5 10 15 25 30 5 10 15 20 25 30 0 Angular distance to Cen A (degrees) Angular distance to Cen A (degrees)

Lemoine & Waxman, JCAP 11 (2009) 009

• Proton-dominated composition at the highest energies

• Heavy-nucleus-dominated in a wide energy range

e.g., <u>Horiuchi et al., ApJ 753 (2013) 69</u> (GRBs), <u>Fang et al., 03 (2013) 010 (</u>pulsars)

• The anisotropy is a statistical fluctuation.

Source Number Density @ the Highest Energies

Strong candidates are ruled out as main contributors.

- Proton-dominated composition (weak deflection cases)
- Steady sources
- The first Auger public data set

Objects	ns [Mpc
Bright galaxy	1.3 x 10
Seyfert galaxy	1.25 x 10
Dead Quasar	5 x 10
Fanaroff-Riley I	8 x 10
Bright quasar	1.4 x 10
Colliding galaxies	7 x 10
BL Lac objects	3 x 10
Fanaroff-Riley II	3 x 10

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Source Number Density

- Pure-iron case (maximal deflection case)
- Steady sources
- The second Auger public data set mocked

HT, Inoue, Yamamoto, Aph 35 (2012) 767

Source Number Density

- Uniform source distribution
- ΔE , $\Delta \alpha$ fluctuations included
- Available as long as the deflection angle is smaller than $\boldsymbol{\alpha}$

The Pierre Auger Observatory, JCAP, 05 (2013) 009

Luminosity Requirement

$$L_{\rm tot} > 2 \times 10^{45} \; \frac{\theta_{\rm F}^2 \beta^3 \Gamma^2}{Z^2} \left(\frac{E}{10^{20} \; {\rm eV}}\right)^2 \; {\rm erg \; s^{-1}}$$

<u>Norman et al., ApJ 454 (1995) 60</u> <u>Blandford, Physica Scripta, T85 (2000) 191</u> Waxman, Pramana 62 (2004) 483

Steady objects with $L_{bol} > 10^{45}$ erg are rare within the GZK radius, namely << 10⁻⁴ Mpc⁻³.

e.g., Zaw et al., ApJ 696 (2009) 1218

UHECR Source Candidates

e.g., <u>Biermann & Strittmatter, ApJ 322 (1987) 643</u>, <u>Takahara, PTP 83 (1990) 1071</u>, <u>Rachen & Biermann, A&A 272 (1993) 161</u>, <u>Norman et al., ApJ 454 (1995) 60,</u> <u>Farrar & Gruzinov, ApJ 693 (2009) 329,</u> <u>Dermer et al., New J. Phys. 11 (2009) 065016</u> <u>Pe'er et al., PRD 80 (2009) 123018,</u> <u>HT & Horiuchi, Aph 34 (2011) 749,</u> <u>Murase, Dermer, HT, Migliori, ApJ 749 (2012) 63</u>

e.g., <u>Blasi et al., ApJ 533 (2000) L123,</u> Arons, ApJ 589 (2003) 871, Kotera, PRD 84 (2011) 023002, Fang et al., ApJ 750 (2012) 118

e.g., <u>Waxman, PRL 75 (1995) 386</u>, Vietri, ApJ 453 (1995) 883, Murase et al., PRD 78 (2008) 023005, Wang et al., ApJ 677 (2008) 432

e.g., <u>Norman et al., ApJ 454 (1995) 60</u>, <u>Kang et al., ApJ 456 (1996) 422</u>, Inoue et al., astro-ph/0701167

Summary on Current Status

Spectrum

GZK steepening + dip/ankle are established.

Composition

	Anisotropy	Interaction model
Composition at the highest E	Proton-dominated	Heavy nuclei
Anisotropy	Protons	Statistical error
Galactic-to-Xgal transition	Proton-dip (p-) ankle transition	Ankle transition
etc.	Interaction models may be modified.	

* Compromised scenario: heavy in a wide range + very weak magnetic fields

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Summary on Current Status

Source properties

- Steady sources
 - proton-dominated $>\sim 10^{-4}$ Mpc⁻³
 - heavy-nucleus-dominated >~ 10⁻⁶ Mpc⁻³
- · If proton-dominated composition,
 - the luminosity requirement \rightarrow transient for jet-sources
 - Strong evolution is ruled out by neutrinos.

1. Introduction

2. Review

3. Future Prospects

4. Summary

What is the Next Step?

How / why are particles accelerated up to such extreme high energies?

Where are particles accelerated up to such extreme high energies?

What is the nature of UHECR sources?

to establish strategies to unveil the sources

Source Classification

Proton / Steady

Proton / Transient

Heavy / Steady

Heavy / Transient

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Transient Sources

Time-delay and time-profile dispersion

$$t_d(E,D) \simeq 1.5 \times 10^5 Z^2 \left(\frac{E}{10^{20} \text{ eV}}\right)^{-2} \left(\frac{D}{100 \text{ Mpc}}\right)^2 \left(\frac{B}{1 \text{ nG}}\right)^2 \left(\frac{\lambda}{1 \text{ Mpc}}\right) \text{ yr}$$

More sources are observed at lower energy that at higher energy.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Evidence for Transient Sources

Strong energy dependence of apparent source number density

HT & Murase, ApJ 748 (2012) 9

Constraints on ρ_s and Energy Budget

 $\cdot \tau_{min}$: GMF, EGMF surrounding sources $\cdot \tau_{max}$: GMF, EGMF surrounding sources, IGMF

Source	Typical Rate ρ_0 (Gpc ⁻³ yr ⁻¹)
HL GRB	~0.1
LL GRB	~ 400
Hypernovae	~ 2000
Magnetar	~12000
Giant Magnetar Flare	~ 10000
Giant AGN Flare	~ 1000
SNe Ibc	~ 20000
Core Collapse SNe	120000

HT & Murase, ApJ 748 (2012) 9

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

35/48

What Can We Do for Composition?

- $\cdot \sqrt{s_{\rm pp}} = 433 \text{ TeV}$ collider required
- · Anisotropy measurements
- · Cosmogenic neutrinos

Cosmogenic Neutrinos ~ Composition ~

TeV

UHE (PeV-EeV)

PeV

EeV

IceCube 6 years data (2008-2014) all combined

Hotspot 最高エネルギー宇宙線の異方性

データを20度の半径の円でoversampling

Significance map

- 最大のsignificance
 - 方向:R.A. = 146.7°, Dec. = 43.2°
 - 観測数:19 (19/72=26%)
 - 等方的分布の期待値:4.5 (4.5/72=6%)
 - Li-Ma significance: 5.1σ

 ・等方的な分布の場合に5.1σ以上の有 意度を得る偶然の確率:3.7x10⁻⁴ (3.4σ)

• MC:15,20,25,30,35度の半径の円

ApJ 790, L21 (2014)

5年のデータ

Hotspot +1年間

•2008年5月-2014年5月(6年間)

• E > 5.7x10¹⁹eV: 72事象→87事象(+15)

• Hotspot内: 19事象→23事象(+4)

5年 +1年 (19/72~26%, 4/15~26%)

• 最大のLi-Ma significance: $5.1\sigma \rightarrow 5.5\sigma \implies$ 偶然の確率 = $3.4\sigma \rightarrow 4.0\sigma$

Comparison with Galaxy Distribution

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Event Distribution from Specific Positions

Auger - Cen A

Telescope Array - Hotspot center

Angular Auto-correlation Functions

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Effects of Galactic Magnetic Fields

HT et al., in prep.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

44/48

Isotropic Background + Source Contribution

Auger

Telescope Array

HT et al., in prep.

Deflection is ~ 20°.

Hajime Takami | 高エネルギーガンマ線で見る極限宇宙2014, ICRR, Japan, Oct. 2, 2014

Indicated Magnetic Fields

Cosmological

$$\theta(E,D) \simeq 4.2^{\circ} Z \left(\frac{E}{6 \times 10^{19} \text{ eV}}\right)^{-1} \left(\frac{D}{100 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{1 \text{ nG}}\right) \left(\frac{\lambda}{1 \text{ Mpc}}\right)^{1/2}$$

Local

$$\theta(E,D) \simeq 18.6^{\circ} Z \left(\frac{E}{6 \times 10^{19} \text{ eV}}\right)^{-1} \left(\frac{D}{2 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{100 \text{ nG}}\right) \left(\frac{\lambda}{100 \text{ kpc}}\right)^{1/2}$$

1. Introduction

2. Review

3. Future Prospects

4. Summary

Current Status

- Anisotropy versus chemical composition
- Transient sources?

Future prospects

The nature of UHECR sources should be understood to establish strategies for source identification.

- Generation: steady or transient
- Composition: proton-dominated or heavy nuclei

Anisotropy!

The hotspots indicates ~ 100 nG magnetic fields around the Milky Way — Multi-messenger!