最高エネルギー宇宙線研究の 最新結果レビュー

大阪市立大学 大学院理学研究科 荻尾 彰一

高エネルギーガンマ線でみる極限宇宙 2013

2013/09/03

目次

Telescope Array 実験(TA実験)の最新結果

 エネルギースペクトル
 化学組成
 到来方向、異方性、起源天体

 TA実験の将来計画
 Augerの最新結果
 TAとAugerの協調

 エムとAugerの協調

1. Telescope Array 実験の最新結果

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a,
S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i},
K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii^l,
R. Ishimori^b, H. Itoⁿ, D. Ivanov^{a,o}, C. C. H. Jui^a, K. Kadota^p, F. Kakimoto^b, O. Kalashev^q, K. Kasahara^r, H. Kawai^s,
S. Kawakami^j, S. Kawana^m, K. Kawata^h, E. Kido^h, H. B. Kim^d, J. H. Kim^a, J. H. Kim^d, S. Kitamura^b, Y. Kitamura^b,
V. Kuzmin^q, Y. J. Kwon^g, J. Lan^a, J.P. Lundquist^a, K. Machida^l, K. Martensⁱ, T. Matsuda^t, T. Matsuyama^j,
J. N. Matthews^a, M. Minamino^j, K. Mukai^l, I. Myers^a, K. Nagasawa^m, S. Nagatakiⁿ, T. Nakamura^u, H. Nanpei^j,
T. Nonaka^h, A. Nozato^f, S. Ogio^j, S. Oh^c, M. Ohnishi^h, H. Ohoka^h, K. Oki^h, T. Okuda^v, M. Onoⁿ, A. Oshima^j,
S. Ozawa^r, I. H. Park^w, M. S. Pshirkov^x, D. C. Rodriguez^a, G. Rubtsov^q, D. Ryu^v, H. Sagawa^h, N. Sakurai^j,
A. L. Sampson^a, L. M. Scott^o, P. D. Shah^a, F. Shibata^l, T. Shibata^h, H. Shimodaira^h, B. K. Shin^d, T. Shirahama^m,
J. D. Smith^a, P. Sokolsky^a, R. W. Springer^a, B. T. Stokes^a, S. R. Stratton^{a,o}, T. A. Stroman^a, M. Takamura^e,
A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^{aa}, M. Tanaka^t, S. B. Thomas^a,
G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b,
Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c,
K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{jad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo, ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ¹Univ. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^gRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, ^uKochi University, ^vRitsumeikan University, ^wSungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yChungnam National University, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University

Telescope Array hybrid detector

Hybrid

r_{i+1}

2013/09/03

Tsunesada (0769)

2000

20

SDイベントに対するエネルギー決定

SD観測によるエネルギースペクトル

N_{exp}=68.1, N_{obs}=26 → 5.74σ

SD、ハイブリッド、単眼FD観測によるスペクトル

Sagawa(0128), Bergman(0221)

GZK機構モデルによるフィット

Kido (0136)

Free parameters : E^{-γ}, (1+z)^m CRPropa v2.0, SOPHIA, IRB, LSS

GZK機構モデルによるフィット

Kido (0136)

Free parameters : E^{-γ}, (1+z)^m CRPropa v2.0, SOPHIA, IRB, LSS

1.2 化学組成

BRM+LR FDステレオ:平均Xmax

14

Nov 2007 ~ Nov 2012: 5-year data

Xstart/Xend definition change

Cut by minimum viewing angle (< 10deg)

Cut by angle btw Shower Detector Planes (SDPs) (< 10deg)

282 events in E $> 10^{18.2}$ eV

Tsunesada (0132), Tameda(0512)

BRM+LR FDステレオ: Xmax分布とMCとの比較

2013/09/03

BRM+LR FDステレオ: Xmax分布の比較: KSテスト

Tsunesada (0132), Tameda(0512)

2013/09/03

MD FD+SDハイブリッドイベント: Xmax

Tsunesada (0132), Allen(0794)

MD-FD (refurbished HiRes-I detectors) + SD (>=3) SDP by FD + SD shower core May 2008 ~ May 2012: 4-year data ~1000 events TA MD/SD Hybrid ICRC2013

1.3 到来方向、異方性、起源天体

到来方向分布:超銀河座標系

Tinyakov(1033)

May 12, 2008 ~ May 4, 2013 (5 years) $E > 57 EeV, \theta < 55^{\circ}$

2013/09/03

到来方向自己相関解析

Tinyakov(1033)

- AGASA has reported clustering at 2.5°, E > 40EeV
- TA: Opairs found (1.5 expected from uniform) \Leftrightarrow no clustering at 2.5°
- Extend search for larger angles and higher energies:

等方性/大規模構造との到来方向相関

Sagawa(0128), Tinyakov(0935, 1033) E > 40 EeV: 132 ev.

E > 57 EeV: 52 ev.

E > 10 EeV: 2130 ev.

White dots: TA data with zenith angle < 55°

Gray patterns:

expected flux density from proton LSS 2MASS Galaxy Redshift catalog (XSCz)

等方性/大規模構造との到来方向相関

AGNとの到来方向相関(PAO(2007)と同じ解析)

他の天体カタログ、エネルギーしきい値ではどうか?

arXiv:1308.5808, submitted to ApJ

- 3CRR, 2MRS, Swift BAT 58M, Swift BAT AGN, 2LAC, VCV 13th
- May 2008 Sep 2011, θ < 45°, アレイの十分内側 → 57イベント E> 40 EeV
- スキャンされるパラメーター
 - ✓ E >= 40 EeV
 - ✓ z < 0.03
 - ✓ φ = 1°~15°(イベント到来方向と天体のなす角がφ以下なら「方向相関」)
- 等方性を仮定したシミュレーションから確率を計算
 - → 確率最小を与えるパラメーターセットを決定

Catalog	E _{th} [Eev]	Window	z	k _{corr} /N _{corr}	p _{iso}	P _{min}	Ρ
Swift-BAT AGN	62.20	10.0°	0.020	17/17	0.52	1.3x10 ⁻⁵	0.01
Swift-BAT 58M	57.46	11.0°	0.017	25/25	0.68	6.1x10 ⁻⁵	0.04
2MRS	51.85	6.5°	0.005	29/31	0.62	8.5x10 ⁻⁵	0.21
VCV 13 th	62.20	2.1°	0.016	8/17	0.14	8.6x10 ⁻⁴	0.25
3CRR	66.77	2.0°	0.017	1/11	0.002	2.2x10 ⁻²	0.75
2LAC	55.41	12.0°	0.018	2/23	0.069	2.1x10 ⁻¹	0.83

他の天体カタログ、エネルギーしきい値ではどうか?

arXiv:1308.5808, submitted to ApJ

k_{corr}: 天体と相関のあったイベント数 N_{corr}: エネルギーしきい値以上のイベント数 p_{iso}: 一様等方からの期待相関数(1イベントあたり) P_{min}: 累積確率 P:ペナルティで補正したP_{min}

Catalog	E _{th} [Eev]	Window	Z	k _{corr} /N _{corr}	p _{iso}	P _{min}	Ρ
Swift-BAT AGN	62.20	10.0°	0.020	17/17	0.52	1.3x10 ⁻⁵	0.01
Swift-BAT 58M	57.46	11.0°	0.017	25/25	0.68	6.1x10 ⁻⁵	0.04
2MRS	51.85	6.5°	0.005	29/31	0.62	8.5x10 ⁻⁵	0.21
VCV 13 th	62.20	2 .1°	0.016	8/17	0.14	8.6x10 ⁻⁴	0.25
3CRR	66.77	2.0 °	0.017	1/11	0.002	2.2x10 ⁻²	0.75
2LAC	55.41	12.0°	0.018	2/23	0.069	2.1x10 ⁻¹	0.83

他の天体カタログ、エネルギーしきい値ではどうか?

1. TA実験の最新結果:まとめ

- GZK機構によるdip、cut offによく一致
- $E_{SD} = E_{FD} \times 1.27$
- Xmax: 10^{18.2} eV以上では、「純粋陽子」と矛盾しない
- ・ 最高エネルギー領域(E > ~60 EeV)では、
 - 到来方向分布は「等方性」とは合わない
 - (統計的に有意ではないものの)起源のヒント?
 - ✓超銀河座標系p~0.003
 - ✓自己相関 p~ 0.004@δ = 20°
 - ✓AGNとの相関 p ~ 0.01
 - ✓(1+z)^m(←低エネルギーでこそ!)

2. TA実験の将来計画

• TALE (TA Low energy Extension)+NICHE

- Second knee、GCR/EGCR transition
- (1+z)^m 精密測定
- EAS @ LHCエネルギー

- TA × 4
- 世界最大級~3,000km²
- 「異方性」に結論(→5σ)

SO(0717), Krizmanic(0365)

TA×4

Sagawa(0121)

TA SDアレイを4倍に拡張 → ~ 3,000 km²

- 約500台のSDを追加(2.08km間隔)
- 10台のFD(旧HiRes)を設置@BRM

2019年3月までに

- 20 TA years of SD
- 14 TA years of Hybrid

3. Augerの最新結果

Pierre Auger Observatory

Letessier Selvon(1227)

Pierre Auger Observatory

高エネルギーガンマ線でみる極限士田

4つの異なる検出法/解析法で比較

SD 1500 m, $\theta < 60^{\circ}$

SD 750 m, $\theta < 55^{\circ}$

SD 1500 m, $62^{\circ} < \theta < 80^{\circ}$

2013/09/03

エネルギー決定のプロセス:S(1000)→E_{FD}の場合

Schulz (0769)

PIERRH AUGEF

- Real event with $E=(76\pm2)\,{
 m EeV},\, heta=54^\circ$ (ld: 201022604238)
- SD: Lateral distribution at optimal distance S(r_{opt})
- FD energy: ∫ Gaisser-Hillas + invisible energy (≈ 10%)

2013/09/03

エネルギー推定のプロセス:S(1000)→E_{FD}の場合

エネルギースケールを更新

uncertainties on the old energy scale

Verzi (0928) (旧スケールでの系統誤差) maximum change at $10^{18} \,\mathrm{eV}$ 30 Energy shift [%] 14% Fluor. yield + FD cal. + FD prof. rec. + Inv. ener. **Absolute fluorescence yield** -8.2% Fluor. yield + FD cal. + FD prof. rec. 25 Fluor. vield + FD cal. 4.3% New opt. eff. 20 Fluor. vield Calibr. database update 3 5% 15 Sub total (FD cal.) 7.8% 9.5% 10 Likelihood fit of dE/dX 2 2% 5 Folding with point. spr. func. 9.4% 0 Sub total (FD prof. rec.) 11.6% 10% -5 4.4% 4% **Invisible energy** -10F 15.6% 22% Total -15 17.5 18 18.5 19 19.5 20 $\log_{10}(E/eV)$ Changes compatibles with the systematic

エネルギーシフトの エネルギー依存性 16%~10%

エネルギー推定の系統誤差

Absolute fluorescence yield	3.4%		_ uncertainties on			
Fluores. spectrum and quenching param.	1.1%	Ļ	number cannets on			
Sub total (Fluorescence Yield)	3.6%	14%	previous energy			
Aerosol optical depth	3% ÷ 6%	-	scale			
Aerosol phase function	1%					
Wavelength dependence of aerosol scattering	0.5%					
Atmospheric density profile	1%					
Sub total (Atmosphere)	3.4% ÷ 6.2%	5% ÷ 8%				
Absolute FD calibration	9%	-	improvement in each			
Nightly relative calibration	2%		improvement in each			
Optical efficiency	3.5%		sector with the			
Sub total (FD calibration)	9.9%	9.5%	exception of FD cal.			
Folding with point spread function	5%	-	(largest contribution)			
Multiple scattering model	1%		work in progress to			
Simulation bias	2%		reduce it			
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%		reduce it			
Sub total (FD profile rec.)	6.5% ÷ 5.6%	10%				
Invisible energy	3% ÷ 1.5%	4%				
Statistical error of the SD calib. fit	0.7% ÷ 1.8%	_				
Stability of the energy scale	5%	_				
TOTAL	14%	22%	Verzi (0928)			

エネルギースペクトル

2013

エネルギースペクトル:TAとAugerの比較

PIERRE AUGUSCI DESEMBLO

Tsunesada (Rapporteur)

Xmaxに関するアップデート

Unger (0690)

most important change:

convolution of point spread function[‡] with lateral shower width $\rightarrow \Delta X_{max} \sim +10 \text{ g/cm}^2$ at low energies

FD+SDハイブリッド:平均Xmaxと分布幅

Unger (0690)

2013

FD+SDハイブリッド:<InA>とその幅

Unger (0690)

 $egin{aligned} &\langle X_{ ext{max}}^{m{p}}
angle - D_{m{p}}\left\langle \ln A
ight
angle \ &\sigma(X_{ ext{max}})^2 pprox \left\langle \sigma_i^2
ight
angle + D_{m{p}}^2 \, \sigma(\ln A)^2 \end{aligned}$

 $\begin{array}{l} \langle \ln A \rangle = \sum f_i \ln A_i \\ \text{e.g. pure } p \to \langle \ln A \rangle = 0, \text{ pure Fe} \to \langle \ln A \rangle \approx 4, 50:50 \text{ p/Fe} \to \langle \ln A \rangle \approx 2 \\ \sigma (\ln A)^2 = \langle \ln^2 A \rangle - \langle \ln A \rangle^2 \\ \text{e.g. pure } p \to \sigma (\ln A)^2 = 0, \text{ pure Fe} \to \sigma (\ln A)^2 = 0, 50:50 \text{ p/Fe} \to \sigma (\ln A)^2 \approx 4 \end{array}$

<lnA> medium -> light -> heavy ?

sigma mixed -> pure ?

SDデータからMuonの発生高度を再構成

調和解析

100

28.6

2.2

3.5

1.5

1.6

1.5

2.5

4.8

9.4

Eas-Top: M. Aglietta et al. 2009 ApJ 692 L130 IceCube: R. Abbasi et al. 2012 ApJ 746 33

高エネルギーガンマ線でみる極限宇宙

Modified

Rayleigh

2 - 4

4 - 8

> 8

148790

31270

12292

1.4±0.5

 $2.5{\pm}1.0$

5.9±1.6

 8 ± 19

 63 ± 25

86 ±16

0.9

5.5

0.1

19

2.4

2.9

1.6

1.2

0.7

1.4

3.1

4.9

大天頂角シャワー

SD信号波形からµ比を見積もる@10¹⁹eV

3. Augerの最新結果: まとめ

- エネルギースケールを更新 → TA寄りに
- ・ dip、cut off。ただし、最高エネルギー端ではTAと異なる?
- <InA>: medium → light → heavy ?
- $\sigma(\ln A)$: mix \rightarrow ~pure ?
- 異方性位相のジャンプ@10¹⁸ eV
- ミューオン過剰: MCと合わない

4. TAとAugerの共同研究

TAとAugerの共同研究(1):データ解析

Measuring Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected at the Telescope Array and the Pierre Auger Observatory Above 10¹⁹eV

(ICRC 0679)

Olivier Deligny¹, for the Telescope Array² and the Pierre Auger Collaborations

¹ IPN Orsay, CNRS/IN2P3 & Université Paris Sud http://www.telescopearray.org/index.php/research/ publications/conference-proceedings full author list: http://www.auger.org/archive/ authors 2013 05.html

Deligny (0679) TAとAugerの両方のデータを用いた 全天の異方性解析

UHECR2012 \rightarrow ICRC2013 \rightarrow 今後も継続する

Progress Towards Understanding the Analyses of Mass Composition Made by the Auger and Telescope **Array Collaborations**

William F. Hanlon¹ for the Telescope Array and Auger Collaborations

¹University of Utah, Department of Physics and Astronomy and High Energy Astrophysics Institute

Hanlon (0964) Augerの結果を説明する「仮想的」組成 → MCイベント生成 → ハイブリッド再構成、Xmax解析

TA FDの分解能、再構成精度、バイアス 「TAはAugerと同じものを見ているのか?」という 問いに答える

TAとPAOの共同研究(2):共通の光源による較正

Flights @ TA-FD BRM : Oct 2012 & Mar 2013 @ Auger, Los Leones : Nov 2012

2013/09/03

- TAの結果:純陽子 + GZK機構と矛盾しない。
- ・ 最高エネルギー領域(~60EeV以上)では起源のヒント
- Augerはエネルギースケール、Xmax解析を更新
- ・TAとAugerは近づいたが、最高エネルギーでは合わない
- ・ SDとFDのエネルギースケールの違い(TA)
- ミューオン過剰(Auger)
- TALE+NICHEによる広エネルギー拡張
- TA×4による異方性問題の解決 → 起源天体へ
- TAとAugerの共同研究