パルサー星雲における 高エネルギー粒子の空間分布

共同研究者: 山崎 了(青学), 大平 豊(青学)

3, Sep., 2013, 高エネルギーガンマ線でみる極限宇宙@宇宙線研

Introduction to 253

N (Pulsar wind nebula)

Crab (HST)

Line emission (SN ejecta)

Powered by PSR Confined by SNR

13年9月3日火曜日

Total spectrum @ 1kyr

Flux decrease rate ~0.2%/year @ radio

- We obtain
- mean B-field inside PWN.
- particle energy & number inside PWN.
- magnetization at injection.
- particle injection spectrum (broken PL).
- spin evolution of the central PSR.

Virtue of

Bright and extended object

Brightness map in different frequencies of the Crab. Bietenholz+04ApJ (radio) Temim+06ApJ (IR) Mori+04 Bietenholz+04ApJ (radio) Mori+04ApJ (X-ray)

• Spectral index map in different frequencies of the Crab. **Bietenholz+97ApJ (radio)** Temim+12ApJ (IR) Mori+04ApJ (X-ray)

PWN emission reflects B-field & particle distribution of PWN

Crabは 点源なので

2000 Counts per pixel

2.5 Photon Index

HESS J1825-137

Aharonian+06A&A (γ-ray)

Motivation What do we learn from observations of the Crab Nebula?

PSR & PWN properties

- Magnetization of pulsar wind. $\rightarrow \sigma$ -problem
- · Injection spectrum of particles. $\rightarrow \kappa$ -problem & particle acceleration
- e^{\pm} escaping process from PWN. \rightarrow PAMELA anomaly

Physics

- Particle transport mechanism inside PWN. \rightarrow advection? diffusion?
- Particle acceleration process inside PWN. \rightarrow second-order acceleration?
- Expansion of PWN. \rightarrow Interaction between PWN & SNR at outer boundary.

Past Studies

Amato+00, advection only Radio brightness map

Transverse Distance r/r_s

6

2

0 4

13年9月3日火曜日

Tang & Chevalier12, diffusion optical spectral index map

Vorstar & Moraal13, diffusion & advection particle spectrum

1D - Model

Dynamics

radial expansion

$$\boldsymbol{v}(r) = v_0 \left(\frac{r}{r_0}\right)^{-\alpha_v} \boldsymbol{e}_r$$

toroidal B-field

$$\boldsymbol{B}(r, t_{\rm inj}) = B(t_{\rm inj}) \left(\frac{r}{r_0}\right)^{-\alpha_B} \boldsymbol{e}_{\varphi}$$

induction equation (MHD condition)

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B})$$

parameters

inner radius: r0 inner velocity: v0 vel. profile index: αν injection B-field: Binj

1D - Model

Particle Spectrum

diffusion & convection transport

+ adiabatic & radiative cooling

$$= -\boldsymbol{\nabla} \cdot \left[(\boldsymbol{v} - K\boldsymbol{\nabla})f \right] + \frac{1}{p^2} \frac{\partial}{\partial p} \left[\left(\frac{1}{3} \boldsymbol{\nabla} \cdot \boldsymbol{v} + (\beta_{\text{syn}} + \beta_{\text{IC}}) p^3 f \right] + Q_{\text{inj}} \right]$$

diffusion coefficient

$$K = \frac{1}{3}\xi cr_{\rm gyro}$$

injection spectrum

$$_{\rm nj}(r,t,p) = q(t) \frac{\delta(r-r_0)}{4\pi r_0^2} \times \begin{cases} (p/p_{\rm b})^{2-p_1} & \text{for } p_{\rm min} \le p \le p_{\rm b} \\ (p/p_{\rm b})^{2-p_2} & \text{for } p_{\rm b} \le p \le p_{\rm max} \end{cases},$$

parameters

diffusion coefficient: ξ injection paramters: p1, p2, γmin, γmax, γb

Mimicking the Crab Nebula

We consider that the particles and the magnetic field are injected at the inner radius $r = r_0$ at a time $t = t_{inj}$. Main parameters are 1. gyro–factor ξ ,

2. inner radius r_0 or velocity profile index α_v , $R_{PWN} = 2.0pc, V_{PWN} = 1.500 km/s$ (a) $t_{age} = 1 kyr$ (r0 = 0.1pc & v0 = c/3 are too much.)

3. injected B-field or magnetization σ $B0 = 300 \mu G$

4. broken power-law injection with $p_1 = 1.5, p_2 = 2.5, \gamma_{min} = 10^2, \gamma = 10^6, \gamma_{max} = 10^9$

13年9月3日火曜日

Results: Particle

1. strong adiabatic cooling for $r_0 = 0.007 pc.$

2. When ξ is non-zero, e[±] can escape from PWN (r >> R_{PWN}).

3. Escaped high energy e[±] are cooled slowly.

4. For $r_0 = 0.007pc$, because r_0 is smaller than diffusion length for high energy e^{\pm} , more particles can escape than for $r_0 = 0.2pc$, mostly in an early phase of evolution.

Results: Spectral Index Profile

$[r_0 = 0.007 \text{pc}, \text{ i.e., } R_{PWN} \sim 300 r_0]$

 $p_1 = 1.5 \& p_2 = 2.5$ corresponds $\alpha = 0.25 \& 0.75$ **1.** Without diffusion, we find synchrotron cooling effect increases spectral index at 10^{16} Hz > 10 at $100r_0 \sim 0.7$ pc. 2. Diffusion effect smooths spectral index profile and we do not find synchrotron cooling hardening of the spectrum for B₀ = 100μ G. We need to select appropriate parameter set of (ξ , B₀) to fit the spectral index distribution. 3. $\alpha = -1/3$ corresponds to low freq. side of synchrotron spectra and is appeared at $r > R_{PWN}$ @ < 10¹⁶Hz.

Conclusion

· Convection-Diffusion transport equation is considered to study the broadband emission structure of PWNe.

• For the escaping of e^{\pm} from PWNe, we should compare diffusion length & r0.

 $\cdot \gamma$ -ray distribution almost traces the particle distribution for inverse Compton scattering off CMB.

• Synchrotron Self-Compton process is considered to be dominated in the Crab Nebula in γ -rays and should be considered the future work.

• We need larger value of B-field at injection point, to obtain softer spectra observed for many PWNe in X-rays ($\alpha > 2$).