MAGICによる最近の観測結果 齋藤浩二 (ICRR) 03.09.2013

1

MAGIC望遠鏡

MAGIC(Major Atmospheric Gamma-ray Imaging Cherenkov) *17 m鏡面を持つ大気チェレンコフ望遠鏡

- * エネルギー閾値: <u>50 GeV</u>
- * 2004年~ MAGIC-I、2009年~2台の望遠鏡によるステレオ観測 * 2011-2012年 望遠鏡アップグレード

MAGIC望遠鏡

D Bulgaria: Sofia

- Croatia: Consortium (Zagreb+)
- **□** Finland: Consortium (Tuorla+)
- Germany: U. Dortmund, MPI München, U. Würzburg, DESY Zeuthen
- Italy: U. Como, INFN Padova/U. Padova, INAF Rome, INFN Pisa/U. Siena, INFN Trieste/U. Udine
- □ Japan: Consortium (Kyoto+)
- Deland: Univ. Łódź
- Spain: IFAE Barcelona, UAB Barcelona, U. Barcelona, IEEC-CSIC Barcelona, IAA Granada, IAC Tenerife, U. Complutense Madrid, CIEMAT Madrid

□ Switzerland: ETH Zurich

MAGIC望遠鏡: スペイン・カナリア諸島ラパルマ島 (28°46N, 17°53W, 2231 m a.s.l.)

望遠鏡アップグレード

新MAGIC-Iカメラ: MAGIC-IIカメラクローン

- 567 PMTs → 1039 PMTs
- ► トリガー領域 1.9°Φ → 2.5°Φ
- PMT量子効率向上

■ etc.

新リードアウトシステム
Mux FADCs(M-I) & DRS2(M-II) → DRS4
■ DRS2→DRS4: 帯域幅、クロストーク、リニアリティ、S/N、デッドタイム(500µs → 26µs)向上

2011年6月-11月

- ■両望遠鏡リードアウトDRS4へ
- Electrics roomリニューアル他
- 2012年6月-10月
- MAGIC-Iカメラ交換
- MAGIC-Iリードアウト、トリガーシステムアップグレード

望遠鏡アップグレード

22 h CrabNebula data 2012 Oct. - 2013 Jan, Zd < 30°

W51C: d ~ 5.5 kpc, medium age (30 kyr) supernova remnant (SNR)
Possible pulsar wind nebula associated to W51C
W51C interacts with W51B
Discovered by Fermi (~GeV)
H.E.S.S. 4.4 σ (>1 TeV)

Observation center Determined position Molecular gas Possible PWN

- ♦ Data taken in 2010 & 2011
- ♦ 53 h effective time
- \diamond 11.6 σ detection (>150 GeV)
- ♦ Extension:
 - 0.12°±0.02°sys±0.02°stat

♦ Top: 300 GeV - 1 TeV ♦ Bottom: > 1 TeV ♦ Underlying structures? ♦ Two independent resolved sources cannot be statistically established ♦ No energy dependent ♦ Cloud: 1.2 % C.U. (> 300 GeV) ♦ PWN: 0.7 % C.U. (> 300 GeV)

E[GeV]	cloud	PWN	cloud/all [%]	<i>PWN</i> /all [%]
> 300	200 ± 30	132 ± 25	30 ± 5	19 ± 4
> 500	116 ± 17	79 ± 17	32 ± 6	22 ± 5
> 1000	48 ± 10	27 ± 10	43 ± 12	24 ± 10

♦ Best fit results:

- s = 1.5• $E_{br} = 10 \text{ GeV}$
- $\blacktriangleright \Delta s = 1.2$
- ▶ $n = 10 \text{ cm}^{-3}$
- ► $B = 53 \ \mu \text{G}$
- $K_e/K_p = 1/80_{-5}$
- $W_p = 5.8 \times 10^{50} \text{ erg}$

Possible 20 %
 contribution from PWN,
 within the statistical
 and systematic errors
 of MAGIC observation

No one-zone Leptonic model matching the data is found.

Agreement with Abdo+ 2009

Simple one-zone hadronic model explains the data

HESS J1857+026

O Discovered by H.E.S.S.

(Aharonian+ 2008)

- Spectral slope -2.4 (>500
 GeV)
- ~0.1° extension
- Possible pulsar wind nebula
 PSR J1856+02245 (Hessels+
 2008)
 - O Distance ~9 kpc
 - $O \dot{E} = 4.6 \times 10^{36} \text{ erg/s}$
- Fermi-LAT (Rousseau+ 2012):
 - Spectral slope -1.5 (< 100
 GeV)
 - O Point like (>10 GeV)

HESS J1857+026, HESS J1858+020

HESS J1857+026

- Observed in 2010
- ~30 h effective time
- \bigcirc ~12 σ detection
- O 2 sources above 1 TeV
- MAGIC J1857.2+0263:
 - 0.21° extension
 - 45 % flux contribution
 - O Counterparts: HESS J1857+026,

PSR J1856+0245, Fermi-LAT

- O MAGIC J1857.6+0297:
 - 0.14° extension
 - O 20 % flux contribution
 - O No counterpart

HESS J1857+026

¹³CO(J = $1 \rightarrow 0$) line emission integrated intensity

Nature of the VHE emission of MAGIC J1857.6+0297 remains a mystery
 MAGIC J1857.6+0297 lies in the vicinity of HII region

O Compact HII region U36.40+0.02 with V_{LSR} = 53.3 km/s (3.3 kpc) which may be associated with the molecular cloud G036.59-00.06

Discovered by H.E.S.S. & MAGIC in 2005

Uncertain redshift z >0.4 (Danforth+ 2010), z <0.66 (Prandini+ 2010)</p>

Have been observed by MAGIC since 2005, showing modest flux variation

Stable flux seen during 4 years by Fermi-LAT

 February-March 2012 high flux state was observed by MAGIC (ATel #3977)
 April 2012 MAGIC detected flare

(ATel #4069)

Most extensive multiwavelength campaign

Power-law fit to observed energy spectrum in flare gives low probability χ^2 /d.o.f. = 36.2/8

Observed spectrum compatible with logparabola $\frac{dF}{dE} = f_0 \cdot \left(\frac{E}{200 GeV}\right)^{-a-b \cdot \log \frac{E}{200 GeV}}$

 $f_0 = 5.1 \pm 0.3 \times 10^{-10} \text{ cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}$ a = 3.7±0.1 b = 1.4±0.3

EBL-corrected spectra (with
 Dominguez+ 2011): reproduced
 by power-law assuming z = 0.4

SED modeling assuming z = 0.4

One-zone SSC model, e- broken power-law distribution

Size of emission region is one order of magnitude higher than in the previous observations in order to keep the Doppler factor not too high

γmin	1.	
ybreak	4.3 . 10 ⁴	
γmax	$1.95.10^{6}$	
n1	1.6	
n2	3.8	
B [G]	0.027	
K [cm ⁻³]	9.1	
R [cm]	10 ¹⁷	
δ	40	
Lp [erg s ⁻¹]	$3.4.10^{46}$	
Le [erg s ⁻¹]	$4.1.10^{45}$	
LB [erg s ⁻¹]	5.8.10 ⁴³	

IC 310

Serendipitously detected by Fermi-LAT (Neronov+ 2010) above 30 GeV and by MAGIC (Aleksić+ 2010) above 260 GeV

- Hard spectrum in VHE: $\Gamma = 2.0$
- Daily-scale VHE flux variability

IC 310 has been classified as a head-tail galaxy (e.g. Ryle & Windram 1968) which is found only in clusters of galaxies

- Jet direction is determined by the galaxy's motion through the intra-cluster medium (ICM)

- "head": bow shock due to the impact of the jet on the ICM

- "tail": redirected extended jet

However, VLBA images show a blazar-like parsec scale structure (Kadler+ 2012)

- There is no indication of an interaction with ICM

- The source belongs to a transitional population between BL Lac and FR I radio galaxy (Rector+ 1999, Kadler+2012)

IC 310

VHE flare in Nov 2012

O 28.5 σ in 3.5 h (>250 GeV) at beginning of MWL campaign (Cortina et al. Atel #4583)

O 56 % C.U. (>250 GeV): 2.5 % C.U. for the mean flux in 2009/2010, 12.5 % C.U. for the high state in 2009/2010 (Aleksić+ 2013)

O Spectrum shape stayed the same in spite of the large flux variability

IC 310

FSRQs

Flat Spectrum Radio Quasars: Only 3 sources seen by IACTs

3C 279 (z = 0.536)

- Great impact discovery by MAGIC in 2006
- Detected again during historical optical flare in 2007
- No signal in 20 h monitoring in 2011
- ToO in June 2011 results in no detection

PKS 1222+216 (z = 0.432)

- Discovered by MAGIC in 2010 during GeV flare observed by Fermi-LAT
- Fastest time scale variability (~10 min) among FSRQs
- Challenges canonical emission models

FSRQs

PKS 1510-089 (z = 0.361)

- Discovered by H.E.S.S. in 2009 (Abramowski+ 2013)
- MAGIC observations triggered by HE gamma-ray flare (AGILE and Fermi) in 2012
- MAGIC observed for 28 nights between February and April
- 6σ detection with 21 hour good quality data
- MAGIC & LAT spectra connect smoothly

FSRQs

PKS 1510-089 2012 MWL

- VHE flux shows no significant variation: apparent discrepancy with the other FSRQs
- HE gamma-ray flares seem to be accompanied by the simultaneous flares in 37 GHz radio
- Gamma-ray flare also coincident with the ejection of new radio component
- Suggested that the gamma-ray and millimeter flaring activities are cospatial
- VLBA core: ≥10 pc away from the central engine (e.g. Jorstad+ 2012)

NEWEST DISCOVERIES

MS 1221.8+2452

- ***** HBL at z = 0.218
- * Weak Fermi source but very hard spectrum above 10 GeV (Γ = 1.26)
- Discovered in April 30th and May 1st 2013 (ATel #5038)
- $*6\sigma$ in 3.7 hour
- ***** 4 % C.U. (>200 GeV)
- ***** For EBL and IGMF studies

NEWEST DISCOVERIES

H 1722+119

- TeV candidate BL Lac in Costamante & Ghisellini (2002)
- Uncertain redshift, lower limit of 0.17
- Past MAGIC observations in 2004-2009: U.L. 4 % C.U. above 140 GeV

In May 2013 the Tuorla blazar monitoring program reported the highest optical flux ever observed since 2005

***** >5 σ detection in 10 hour (ATel #5080)

SUMMARY & OUTLOOK

✓ 2011年-2012年望遠鏡アップグレード
 ✓ 低エネルギー領域でさらにパフォーマンス向上
 ✓ Galactic/Extragalactic共にいくつもの興味深い
 サイエンス結果を提供し続けている

✓ 今後5-7年 安定したオペレーション
 ✓ ステレオSumトリガーのインストール in 今年