

CTA Science Cases for Ultra-high-energy Cosmic Rays

Hajime Takami KEK, JSPS Fellow

- Current understandings on ultra-high-energy cosmic rays
- Multi-messenger approaches to UHECRs
- Gamma-ray emission accompanying UHECR acceleration
 - Hadronic gamma-ray emission from blazars / AGN
 - Cosmic-ray-induced cascades
 - Neutron-star-binary mergers -- connection to GW

Cosmic rays

Hajime Takami | CTA workshop 2013 @ ICRR, the University of Tokyo, Japan, Sep. 3, 2013

00 m a.s.l.

or (SD) tor SDS HECR Spectra

ıg

UHECR Composition

oyll2.1

Small-scale

Remaining Problems on UHECRs

- What is the maximum energy of UHECRs?
- What is the composition of UHECRs?

What is the sources of UHECRs?

Possible Highest-energy CR Sources

'96, Inoue et al. '07

Kotera '11, Fang et al. '12

• Some (extreme) composition models have not been favored (spectrum, composition)

Allard et al. 2008, Hooper et al. 2009, ...

- Apparent local source number density
 - (>)~ 10⁻⁴ Mpc⁻³ for small deflection (~protons)

HT& Sato 2009, Cuoco et al. 2009, Abreu et al. 2013

>~ 10⁻⁷ Mpc⁻³ for heavy nuclei (highly dependent on B models)

HT, Inoue, Yamamoto 2012

Objects	n₅ [Mpc⁻³]
Major galaxies	~ 10 ⁻²
Bright galaxies	1.3 x 10 ⁻²
Seyfert galaxies	1.25 x 10 ⁻²
Dead quasars	5 x 10 ⁻⁴
Fanaroff-Riley I	8 x 10⁻⁵
Cluster of galaxies	1 x 10 ⁻⁶
Bright quasars	1.4 x 10 ⁻⁶
Colliding galaxies	7 x 10 ⁻⁷
BL Lac objects	3 x 10 ⁻⁷
Fanaroff-Riley II	3 x 10 ⁻⁸

See Yoshida & Ishihara (2012) for a neutrino constraint

Source-identification ability of UHECRs

Averaged occupation of UHECR sources in the sky > Deflection angles

D_{max}(E)

- 99% cosmic rays included
- Uniform distribution

Occupation

$$\frac{4\pi}{3}D_{\max}^3(E)n_s\Delta\Omega = 4\pi$$

Deflection (extragalactic)

$$\theta(E) = 2.5^{\circ} \left(\frac{E}{10^{20} \text{ eV}}\right)^{-1} \left(\frac{D_{\max}(E)}{100 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{1 \text{ nG}}\right) \left(\frac{\lambda}{1 \text{ Mpc}}\right)^{1/2}$$

 $B\lambda^{1/2}\sim 0.3~{\rm nG~Mpc^{1/2}}~$ from Ryu et al. (2008) simulations HT & Murase 2012

- 1. Huge statistics at $E > 10^{20} \text{ eV}$ JEM-EUSO, TA2, Auger-next, ...
- 2. Other messengers Gamma rays, neutrinos, ...

A stronger anisotropy appears at higher energies .

 \cdot n_s(E) ~ source number density estimated on the assumption of steady sources \cdot ρ_s : UHECR burst rate (source property instead of n_s in steady source cases)

The dependence of $n_s(E)$ is evidence of transient generation of UHECRs.

 $n_s(E)$ should be estimated in at least two energy ranges.

PeV neutrinos

• extragalactic sources:

- relation to the sources of UHE CRs
- GZK from low *E*_{max} blazars
- cores of active galactic nuclei (AGN)
- low-power γ -ray bursts (GRB)
- [Murase & loka 1306.2274]

[Kistler, Stanev & Yuksel 1301.1703]

[Stecker et al.'91;Stecker 1305.7404]

[Kalashev, Kusenko & Essey 1303.0300]

- starburst galaxies [Loeb&Waxman'06; He *et al.* 1303.1253; Murase, MA & Lacki 1306.3417]
- galaxy clusters/groups [Berezinksy, Blasi & Ptuskin'97; Murase, MA & Lacki 1306.3417]

• Galactic sources:

- heavy dark matter decay [Feldstein *et al.* 1303.7320; Esmaili & Serpico 1308.1105]
- peculiar hypernovae [Fox, Kashiyama & Meszaros 1305.6606; MA & Murase (in prep.)]
- diffuse Galactic γ-ray emission [e.g. Ingelman & Thunman'96; MA & Murase (in prep.)]

• γ -ray association:

- unidentified Galactic TeV $\gamma\text{-ray}$ sources
- sub-TeV diffuse Galactic γ -ray emission

[Fox, Kashiyama & Meszaros 1306.6606] [Neronov, Semikoz & Tchernin 1307.2158

Markus Ahlers, TeVPA 2013

Hajime Takami | CTA workshop 2013 @ ICRR, the University of Tokyo, Japan, Sep. 3, 2013

$E_p \sim 20 \; E_v \sim 10^{16} - 10^{17} \; eV$

- Gamma-ray emission accompanying UHECR acceleration
 - Hadronic gamma-ray emission from blazars / AGN
 - Cosmic-ray-induced cascades (AGN)
 - (Neutron-star-binary mergers if time is allowed)

Active Galactic Nuclei

- Luminous nucleus comparable with the whole galaxy
- Powered by accretion onto supermassive black holes
- Some AGN (radio galaxies) have jets.

Unification Hypothesis

The diversity of AGN originates from the viewing angle of observers.

Urry & Padovani 1995

Blazars - AGN with jets directed to observers

Relativistic jets --> Relativistic beaming is essentially important.

Typical SED and Blazar Sequence

Empirical relation:

The lower peak frequency is, the higher luminosity is.

Emission Models of Blazars

SED Modeling of Mrk 421

Leptonic model

Hadronic model

- · Spectral fit \rightarrow Physical parameters
- · Both models can reproduce the SED.
- · Hadronic models usually require UHECRs.

(Lepto-)Hadronic Model for BL Lac

	Leptonic	Hadronic		
L _e [erg/s]	4.4 x 10 ⁴³	-		
L _p [erg/s]	8.7 x 10 ⁴²	9.8 x 10 ⁴⁸		
B [G]	2.5	10		
δ	15	15		
γmin	1.1 x 10 ³	7 x 10 ²		
γmax	1 x 10⁵	1.5 x 10 ⁴		
q _e	3.2	3.5		
E _{max}	_	2 x 10 ¹⁸		
q p	_	2.4		

Hadronic model

- $L_p = \pi R^2 \beta c n_p m_p c^2$
- μ -synchrotron, π -synchrotron are neglected.
 - Simpler semi-analytical method --- parameter fits
 - Only available cases are considered
- Cascade in the emission region

Hajime Takami | CTA workshop 2013 @ ICRR, the University of Tokyo, Japan, Sep. 3, 2013

UHECR Acceleration in SSC blobs

Hadronic scenarios --> hint of unknown UHECR sources

ID	Source	z	Epoch	t _{var} δ ^a		$R^{\prime a}(10^{15})$	B'^{a}	$E^{\text{max}}_{A}/Z(10^{19})^{\text{f}}$	
				(5)		(cm)	(G)	(eV)	
1	CenA(core)	0.00183	2009	$\leq 1.0 \times 10^{5}$	1.0-3.9	3.0-11.0	0.02-6.2	0.01-4	
2	M87	0.00436	2009	1.7×10^{5}	3.9	14.0	0.055	0.05	
3	NGC1275	0.0179	2010 Oct	8.6×10^{4}	2.3	2×10^{3}	0.05	5	
4	NGC6251	0.024			2.4	120	0.037	0.3	
5	Mrk421	0.03	2001 Mar 19	1.0×10^{3}	80	3.0	0.048	0.3	
6	Mrk501 (h.c,1997)	0.0337	1997 Apr 16	7×10^{3}	14-20	1.0-5.0	0.15-0.8	0.1-2	
7	Mrk501 (l.º,1997)	0.0337	1997 Apr 7		15	5.0	0.8	2	
8	Mrk501 (l.º,2007)	0.0337	2007		25	1.0	0.31	0.2	
9	Mrk501 (l.º,2009)	0.0337	2009	3.5×10^{5}	12-25	1.0-130	0.015-0.34	0.2-0.7	
10	1ES1959+650(h.°)	0.047	2001 Sep-2002 May	$(2.2-7.2) \times 10^4$	18-20	5.8-9	0.04-0.9	0.1-3	
11	1ES1959+650(1.°)	0.047	2006 May 23-25	8.64×10^{4}	18	7.3	0.25-0.4	1-2	
12	PKS2200+420/BL Lac	0.069			15	2.0	1.4	1	
13	PKS2005-489	0.071			22	8.0	0.7	4	
14	WComae	0.102	2008 Jun 7-8	5400	20-25	3.0	0.24-0.3	0.4-0.7	
15	PKS2155-304	0.116	2006 Jul 28-30	300	110	0.86	0.1	0.3	

Dermer, Murase, HT, Migliori 2012

The highest energy CRs are difficult to be accelerated in the SSC blobs of BL Lac objects / FR I galaxies.

Extreme HBL

Mean free path and optical depth of gamma rays

Very-high-energy photons (>100 GeV) are absorbed via pair creation, depending on source redshift, by extragalactic background light.

Created pairs are affected by intergalactic magnetic magnetic fields if they are strong enough.

- Pair-halo : image spread (e.g., Aharonian Coppi, Völk 1994, Elyiv et al. 2009)
- Pair-echo : delayed secondary gamma rays (e.g., Plaga 1995, Murase et al. 2008, Ichiki et al. 2008)

• IGMF study : gamma rays from deflected pairs do not reach the earth if IGMF is sufficiently strong (e.g., Neronov et al. 2009, Dermer et al. 2011, Dolag et al. 2011), but possible plasma instability causes the deflection (under debate; e.g., Schlickeiser et al. 2013 for a recent discussion)

Gamma-ray-induced Cascade

• The cascaded spectra are strongly attenuated above energies defined from $\tau_{\gamma\gamma}(E,z) = 1$.

• A spectral shape at around the characteristic EBL absorption energy is essentially determined by the spectral shape of EBL.

- The hard spectra of extreme HBLs can be well reproduced even after strong EBL absorption.
- A lot of >10 TeV photons are required to compensate the absorption.

Hajime Takami | CTA workshop 2013 @ ICRR, the University of Tokyo, Japan, Sep. 3, 2013

Cosmic-ray-induced Cascade

Gamma rays induced by cosmic rays

Cosmic-ray-induced cascade

dN/dE « E⁻²; 10¹⁸ < E < 10¹⁹ eV
No IGMF is assumed.

Gamma-ray-induced cascade

• Gamma-rays with 10¹⁹ eV induces the cascades.

• No IGMF is assumed.

Hard spectra are predicted above energies defined from $\tau_{\gamma\gamma}(E,z) = 1$ from cosmic-rayinduced cascade due to the long energy-loss length of Bethe-Heitler pair creation.

γ-rays from Line-of-sight Cascade

Hajime Takami | CTA workshop 2013 @ ICRR, the University of Tokyo, Japan, Sep. 3, 2013

- Spectral shape is essentially determined by the spectral shape of EBL.
- \bullet 100 TeV $\gamma\text{-ray}$ emitter can also reproduce the observed spectrum.
- Difference between hadronic cascade scenarios and leptonic cascade scenarios appears above 20 TeV
- CTA and HAWK have a potential to distinguish these scenarios.

Gamma rays induced by cosmic rays

Cosmic-ray-induced cascade

dN/dE ∝ E⁻²; 10¹⁸ < E < 10¹⁹ eV
No IGMF is assumed.

Gamma-ray-induced cascade

• Gamma-rays with 10¹⁹ eV induces the cascades.

• No IGMF is assumed.

Distant hard gamma-ray spectrum blazars may result from cosmic-ray-induced cascades, which become evidence for ultra-high-energy cosmic-ray sources.

List of distant VHE gamma-ray emitters

Fermi sources associated with VHE photons, but not identified by IACTs (z>0.5)

	Name	RA	DEC	Туре	Z	N ₃₀₋₁₀₀	N _{0.1}	N _{0.2}	E_{max}	L/L_{Mrk421}	P	Index
1	TXS 0138-097	25.3576	-9.4788	BL	0.733	2	lf	0	138	44.5	1.1e-3	2.033
2	PKS 0426-380	67.1685	-37.9388	BL	1.11	13	1f	0	134	151	0.9e-3	1.946
3	B2 0912+29	138.9683	29.5567	BL	1.521	5	1f	0	126	405	0.7e-3	1.875
4	Ton 116	190.8031	36.4622	BL	1.065	11	1b	0	114	133	0.7e-3	1.698
5	PG 1246+586	192.0783	58.3413	BL	0.847	9	1b	0	104	67.5	1.2e-3	1.949
6	B3 1307+433	197.3563	43.0849	BL	0.69	4	1f	0	104	37.5	0.8e-3	1.839
7	4C +55.17	149.4091	55.3827	FSRQ	0.8955	14	1b	0	141	84.0	1.6e-3	Log PB
8	TXS 1720+102	260.6857	10.2266	FSRQ	0.732	0	1f	0	168	46.8	1.9e-3	2.23
9	PKS 1958-179	300.2379	-17.8160	FSRQ	0.65	2	1b	0	118	33.5	2.3e-3	2.38
10	PKS 2142-75	326.8030	-75.6037	FSRQ	1.139	1	1f	0	135	173	1.5e-3	2.517
11	KUV 00311-1938	8.3933	-19.3594	BL	0.61	11	0	2b	152	53.2	8e-6	1.758
12	RGB J0250+172	42.6567	17.2067	BL	1.1	3	0	1b	358	147	7.6e-3	1.836
13	PKS 1130+008	173.190067	0.5744	BL	1.223	1	0	1f	140	204	4.4e-3	2.178

Neronov et al. 2012

(The 1FHL catalog may include more sources with VHE photons.)

- They have rather hard spectra.
- The hard spectra motivates possible hadronic origin.

Example: KUV 00311-1938

- dN/dE \propto E^{-2.6} exp (-E/E_c); E > 10¹⁸ eV, E_c = 10¹⁹ eV
- No suppression from IGMF (B < 10^{-14} G for protons)

KUV 00311-1938

- Distant hard-source in the Fermi-LAT
- Recently detected by H.E.S.S. Becherini et al. 2012
- z=0.61 is quoted, but recent optical spectroscopy indicates only z>0.506. Pita et al. 2012

- Both models reproduce the Fermi spectrum.
 The sources in the sample except PKS 0426-380 and 2142 are also reproduced.
- These models are distinguishable above ~500 GeV even considering the uncertainty of EBL models.
- The hadronic model is favored if z = 0.61 is correct.
 Redshift measurement is important for confirmation.

Example: KUV 00311-1938 ~ integral flux ~

Integral flux is sensitive to the hard component in the hadronic model.

- Integral flux above ~500 GeV can clearly distinguish these two scenarios.
- The light curve (with ~3 month bins) is consistent with constant flux (χ^2 /d.o.f. = 0.94)

Example: PG 1246+586 (z=0.847)

- Even for z~0.85 sources, hadronic origin can be investigated by CTA.
- The light curve (with ~3 month bins) is consistent with constant flux (χ^2 /d.o.f. = 0.40)

Ejecta - ISM Shock from NS Binary Mergers

• The origin of UHECRs are still under debate, although some essential constraints have been obtained from UHECR and neutrino experiments.

- Towards source identification
 - Huge statistics above 10²⁰ eV --- JEM-EUSO, TA2, AugerNext, ...
 - Multi-messenger approaches --- CTA, IceCube, ARA, ...
- Gamma-ray connection to UHECRs
 - Hadronic gamma-ray emission
 - Cosmic-ray-induced cascade
 - (Inference from physical parameters constrained by leptonic emission)