130GeV gamma-ray line and dark matter

中山 和則 (東京大学)

CTA研究会@東京大学宇宙線研究所(2012/9/26)

Contents

Evidence for I30GeV gamma-ray line
Models to explain I30GeV gamma
Future prospects

130GeV line ?

• C.Weniger, I 204.2797

• Analyzed 43months Fermi data 20-300GeV.

 Chose sky regions that optimize DM signal for several DM halo profiles.

(Background count from I-20GeV data)

Performed spectral analysis for chosen sky region

$$\frac{dF}{dE} = S\delta(E - E_{\gamma}) + \beta \left(\frac{E}{E_{\gamma}}\right)^{-\gamma}$$

 Claimed 4.6σ evidence for 130GeV line (3.2σ after look-elsewhere effect)

 $m_{\chi} \simeq 129.8 \text{GeV}$ $\langle \sigma v \rangle_{\gamma\gamma} \simeq 1.27 \times 10^{-27} \text{cm}^3/\text{s}$

I: Cored isothermal

2: NFW

3: Einasto

4: Contr, $\alpha = 1.15$

5: Contr, $\alpha = 1.3$

Region3

Region4

red : best fit with DM green : best fit without DM

12年9月26日水曜日

- Profumo, Linden, 1204.6047
 - The excess region overlaps with Fermi bubble
 - Broken power law component from Fermi bubble can mimic the I30GeV gamma line
- Tempel, Hektor, Raidal, 1205.1045
 - I95week Fermi data : I30GeV excess with 4.5σ
 - No artificial choice of the signal region
 - The excess is not correlated with Fermi bubble
- Fermi-LAT collaboration, 1205.2739
 - 2 years data with $|b| > 10^\circ + 20^\circ \times 20^\circ$ around GC
 - No excess in 4.8GeV 264GeV

Distribution of relative signal intensity of I30GeV photons

Excess : $\sim 4\sigma$ Deficit : $\sim 2\sigma$

→ True excess?
 → Statistical fluctuation?
 Tempel, Hektor, Raidal, 1205.1045

Tempel, Hektor, Raidal, 1205.1045

Region	l (deg)	b (deg)	N_{γ} (20–300) GeV	$N_{\gamma} \ (120-140 \ {\rm GeV})$	significance
Weniger Reg3	_	_	3298	65	3.6σ
Central	-1	-0.7	818	27	4.5σ
West	-10	0	726	21	3.2σ
East	17	-3	481	14	2.7σ
North	-7	16.5	109	4	1.6σ

Boyarsky, Malyshev, Ruchayskiy, 1205.4700

- 3.7years Fermi data
- Significant spatial variations in excess and dip
- Dark matter interpretation is "dubious"
- Su, Finkbeiner, 1206.1616
 - 3.7years Fermi data
 - 6.5σ evidence for existence of line excess
- Hektor, Raidal, Tempel, 1207.4466
 - I30GeV gamma from 6 clusters (3.2σ)
- Hektor, Raidal, Tempel, 1209.4548
 Finkbeiner, Su, Weniger, 1209.4562
 - Effects of Earth limb photon is insignificant

• Su, Finkbeiner, 1206.1616

12年9月26日水曜日

Models to explain 130GeV line

- Aharonian, Khangulyan, Malyshev, 1207.0458
 - They analyzed 52month Fermi data in regions claimed by Tempel et al., Boyarsky et al., Su et al. and confirmed excess of ~130GeV gamma.

 Inverse-Compton by electrons from cold pulsar wind can produce gamma "line" at ~130GeV.

The idea

Inverse-Compton process $e + \gamma^{BG} \rightarrow e + \gamma$ Energy of upscattered photon :

 $E_{\gamma} \sim \gamma_e^2 E_{\gamma}^{BG} \quad \text{for } \gamma_e E_{\gamma}^{BG} \ll m_e \quad \text{(Thomson regime)}$ $E_{\gamma} \sim E_e = \gamma_e m_e \quad \text{for } \gamma_e E_{\gamma}^{BG} \gg m_e \quad \text{(Klein-Nishina)}$ $(\gamma_e : \text{Lorentz factor of incident electron})$

 $b > 30 \leftrightarrow \Delta E_{\gamma}/E_{\gamma} < 15\%$

$$E_{\gamma}^{\mathrm{BG}} > 15 \,\mathrm{eV} \left(\frac{130 \mathrm{GeV}}{E_{\gamma}} \right)$$

Thermal emission from neutron star (single pulsar) ?
or from companion star (binary systems) ?

Dark matter

Many models after Weniger(2012) (~40 paper)

• Required cross section $\langle \sigma v \rangle_{\gamma\gamma} \simeq 1.27 \times 10^{-27} \text{cm}^3/\text{s}$ is smaller than the value for correct relic abundance. • DM model w/o producing huge continuum gamma? Constraint from continuum gamma is important. Most models predict sizable Zy fraction Double gamma-ray line (114GeV&130GeV) ? $E_{\gamma} = m_{\chi}, \ m_{\chi} - \frac{m_Z^2}{4m_{\chi}}$ J.Cline, 1205.2688

- W.Buchmuller, M.Gari $\chi^{\chi}_{10^{-2}}$ Typical DM : $\chi + \chi - \chi - \chi + \chi - \chi - \chi + \chi - \chi^{-10^{-3}}$
 - Severe constraint from continuum gamma and anti-p.
 - Similar conclusion for decaying DM
 - Higgsino/Wino is not suitable.

Cohen, Lisanti, Slatyer, Wacker, 1207.0800

100

Upper bound on continuum gamma from DM annihilation.

$$R = \frac{\sigma_{\text{ann}}}{2\sigma_{2\gamma} + \sigma_{Z\gamma}} \quad < \cdot$$

cf. $R \gtrsim 200$ for neutralino DM

Constraint from CMB DM annihilation at recombination epoch → Ionize H → effects on CMB anisotropy

Hisano, Kawasaki, Kohri, Moroi, KN, Sekiguchi, 1102.4658

- Das, Ellwanger, Mitropoulos, I 206.2639
 - NMSSM is natural framework for solving the mu-problem in MSSM.
 - It can explain I25GeV Higgs boson found at LHC.

 Neutralino DM in NMSSM annihilates through singlet-like CP-odd Higgs can explain I30GeV gamma.

 $W = \lambda S H_u H_d + \frac{\kappa}{2} S^3$ $-\mathcal{L} = m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u H_d + \frac{\kappa}{2} A_\kappa S^3 + \text{h.c.}\right)$ $+|\lambda H_u H_d + \kappa S^2|^2 + |\lambda S|^2 (|H_u|^2 + |H_d|^2)$ Mass of As is ~ 260GeV to enhance 2gamma. $\longrightarrow m_{A_c}^2 \simeq -3\kappa SA_\kappa \sim (260 \text{GeV})^2$ Mixing of As and Hu, Hd are small. (Otherwise, As decays into SM quarks) $\longrightarrow \lambda (A_{\lambda} - 2\kappa S) \sim 0$ Lightest Higgs boson is 126GeV. $\longrightarrow \lambda \sim 0.6$ $\tan\beta \sim O(1)$ Correct thermal relic abundance

Sample point

Parameters	
λ	0.61
κ	0.328
A_{λ}	267
A_{κ}	-114.1
$\tan\beta$	1.8
$\mu_{ ext{eff}}$	269
M_1	150
left-h. slepton masses	150
right-h. slepton masses	160
$A_e = A_\mu = A_\tau$	500
Sparticle masses	
$m_{\tilde{g}}$	971
$\langle m_{\tilde{q}} \rangle$	1530
$m_{\tilde{t}_1}$	204
$m_{\tilde{t}_2}$	1034
$m_{\tilde{b}_1}$	1005
$m_{\tilde{\mu}_L}$	154
$M_{\chi_1^0}$	129.6
$M_{\chi_2^0}$	217
$M_{\chi_2^0}$	287
$M_{\chi^0_4}$	309
M_{χ^0}	376
$M_{\chi^{\pm}_{1}}$	210
$M_{\chi^{\pm}}$	370

	Higgs masses				
	$M_{H_1}(=M_{H_{SM}})$	124.3			
	M_{H_2}	256			
	M_{H_3}	519			
	$M_{A_1}(=M_{A_S})$	258.9			
	$R^{bb}_{A_S}$	3×10^{-3}			
	M_{A_2}	515			
	$M_{H^{\pm}}$	511			
	Components of χ_1^0				
	N_{11}^2	0.826			
	N_{12}^2	0.026			
	N_{13}^2	0.077			
	N_{14}^2	0.065			
	N_{15}^2	0.009			
	Observables				
	Ωh^2	0.11			
	$\sigma(p)_{SI} \ [10^{-8} \text{ pb}]$	1.21			
$\left(\right)$	$\langle \sigma v \rangle (\chi_1^0 \chi_1^0 \to \gamma \gamma) \ [10^{-27} \text{cm}^3 \text{ s}^{-1}]$	1.1			
	$\langle \sigma v \rangle (\chi_1^0 \chi_1^0 \to Z \gamma) \ [10^{-27} \text{cm}^3 \text{ s}^{-1}]$	0.8			
	$\langle \sigma v \rangle (\chi_1^0 \chi_1^0 \to WW) \ [10^{-27} \text{cm}^3 \text{ s}^{-1}]$	3.46			
	$\langle \sigma v \rangle (\chi_1^0 \chi_1^0 \to ZZ) \ [10^{-27} \text{cm}^3 \text{ s}^{-1}]$	0.26			
	$\langle \sigma v \rangle (\chi_1^0 \chi_1^0 \to b \overline{b}) \ [10^{-27} \text{cm}^3 \text{ s}^{-1}]$	0.60			
	$\langle \sigma v \rangle (\chi_1^0 \chi_1^0 \to \tau \bar{\tau}) \ [10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}]$	0.09			
	$\Delta a_{\mu} \ [10^{-10}]$	$6.5 \pm \overline{3.0}$			

(

Future prospects

Bergstrom, Conrad, Farnier, Bertone, Weniger, 1207.6773

- Future prospects for confirming I30GeV line at HESS-II, CTA, GAMMA-400
- Large area, large statistics → CTA
 Better energy resolution → GAMMA-400

arXiv:1201.2490

	SPACED-BASED				GROUND-BASED				
	EGRET	AGILE	Fermi	CALET	GAMMA	H.E.S.S.	MAGIC	VERITAS	CTA
					-400				
Energy range,	0.03-	0.03-	0.1-	10-	0.1-3000	>100	>50	>100	>10
GeV	30	50	300	10000					
Angular	0.2	0.1	0.1	0.1	~0.01	0.1	0.1	0.1	0.1
resolution, deg	$E_{\gamma}\!\sim 0.5~GeV$	$E_{\gamma} \sim 1 \text{ GeV}$							
$(E_{\gamma} > 100 \text{ GeV})$									
Energy	15	50	10	2	~1	15	20	15	15
resolution, %	$E_{\gamma} \sim 0.5 \ GeV$	$E_{\gamma} \sim 1 \text{ GeV}$							
$(E_{\gamma} > 100 \text{ GeV})$									

Signal region : 2° around GC, 5 hours observation
CTA can confirm/exclude gamma excess
γγ/γZ discrimination is difficult

Signal region : 20° around GC, ~I year observation
GAMMA-400 can confirm/exclude gamma excess
γγ/γZ discrimination may be possible

Summary

- There are increasing evidence of I30GeV gamma line from Galactic center.
- Not likely correlated with Fermi bubble.
- It may be explained by dark matter annihilation or some astrophysical processes.
- CTA will be able to confirm/exclude it.

Backup slides

Hooper, Kelso, Queiroz, 1209.3105

"robust constraint" on DM from GC region

(NFW profile)

Dashed : over subtracted

12年9月26日水曜日

Comparison with other regions

12年9月26日水曜日

• Frandsen et al., 1207.3971

Prediction on DM direct detection from loop-induced interaction

real scalar DM :

$$\mathcal{L}_{\text{eff}} = c\chi^2 F_{\mu\nu} F^{\mu\nu}, c\chi^2 F_{\mu\nu} \tilde{F}^{\mu\nu}$$

fermionic DM :

 $\mathcal{L}_{\text{eff}} = c\bar{\chi}\chi F_{\mu\nu}F^{\mu\nu}, c\bar{\chi}\chi F_{\mu\nu}\tilde{F}^{\mu\nu}$ $, c\bar{\chi}\gamma_5\chi F_{\mu\nu}F^{\mu\nu}, c\bar{\chi}\gamma_5\chi F_{\mu\nu}\tilde{F}^{\mu\nu}$ $, c\bar{\chi}\sigma^{\mu\nu}\chi F^{\rho}_{\mu}\tilde{F}_{\nu\rho} \text{ (Dirac)}$

Majorana fermion DM $\mathcal{L}_{eff} = c \bar{\chi} \chi F_{\mu\nu} F^{\mu\nu}$

12年9月26日水曜日

- Cholis, Tavakoli, Ullio, 1207.1468
 - Upper bound on continuum gamma from DM annihilation.
 - Similar conclusion to Cohen et al.

