Optical Observations of Supernovae Current Status and Future

超新星爆発:可視光観測の現状とこれから

HST, optical

Chandra, X-ray

Masaomi Tanaka 田中 雅臣 (国立天文台)

Science with CTA Cosmic ray acceleration by SNR

Optical observations

Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA

F. Acero^e, A. Bamba^h, S. Casanova^{a,b,c,**}, E. de Cea^f, E. de Oña Wilhelmi^b, S. Gabici^{a,*}, Y. Gallant^e, D. Hadasch^f, A. Marcowith^e, G. Pedaletti^f, O. Reimer^{d,**}, M. Renaud^e, D. F. Torres^{f,g}, F. Volpe^b, for the CTA collaboration.

If SNRs indeed are the sources of CRs,

they have to convert ~ 10% of their explosion energy into accelerated particles. Since the explosion energy of a supernova is a remarkably constant quantity close to 10^{51} erg, a rough estimate of the expected gamma-ray flux from a given SNR can be obtained if one knows the density of the ambient medium, and the SNR distance.

Acero et al. Astroparticle Physics (arXiv:1209.0582)

Optical Observations of Supernovae Current Status and Future

超新星爆発:可視光観測の現状とこれから

Supernova rate and kinetic energy
SNR type and distance
Future opportunities

Thanks to many of you! (@ banquet)

HST, optical

- Extra-galactic (point source)
 Galactic and LMC/SMC
 - ~300-500 / yr

- ~200 in our Galaxy
- R ~ 10¹⁵ cm, v ~ 10,000 km/s
 R >~ pc, v < 3,000 km/s
- Luminosity <= radioactivity
- Optical
 - Lopt ~ 10⁴² erg/s
- absorption-line spectrum
 => emission-line spectrum
 (thick => thin)

- Luminosity <= shock</p>
- Radio-Opt-X-Gamma
 - $Lx \sim 10^{37} \text{ erg/s}$
- Synchrotron
 + brems + emission line

Discovery of extragalactic SNe

Before

After

KISS: Kiso supernova survey 東京大学木曽観測所 シュミット望遠鏡

Discovery of extragalactic SNe

KISS: Kiso supernova survey 東京大学木曽観測所 シュミット望遠鏡

thick Type II: Hydrogen **Type I**: No hydrogen a: Strong Si **Ib**: Strong He Ic: No strong Si/He

thin

Optical light curve

Core-collapse SN rate Initial mass function

$$R_{\rm SN}(z) = \rho_*(z) \frac{\int_{M_{\rm min,SN}}^{M_{\rm max,SN}} \psi(M) dM}{\int_{M_{\rm min}}^{M_{\rm max}} M \psi(M) dM}$$

Star formation rate I (Msun/yr)

0.01 (/Msun)

Galactic SN rate ~ 0.01 SN/yr (= | SN / 100 yr)

SN rate ~ 1/2 x expectation

Dust extinction? Luminosity function?

(Type la rate ~ 1/3 x core-collapse rate)

Dahlen et al. 2004 Botticella et al. 2008 Bazin et al. 2009 Li et al. 2011 see also Horiuchi et al. 2011

Kinetic energy $E = (1/2) M v^2$

HST, optical

Intensity

proper motion Doppler v (decelerated)

Diffusion time

$$\tau_{\rm LC} \propto M_{\rm ej}^{3/4} E_K^{-1/4}$$

Doppler v (free expansion)

Mass

Sedov solution needs n(ISM)

Type la: Observational test

Kinetic energy

MT+II

MNRAS,

410, 1725

Nuclear energy production

• $E(nuclear) = [1.56M(^{56}Ni) + 1.74M(Fe) + 1.24M(Si)] \times 10^{51}$ ~ $(1.56\times0.6 + 1.74\times0.3 + 1.24\times0.3) \times 10^{51}$ ~ $1.8 \times 10^{51} erg$

• Kinetic energy = Nuclear - binding energy

E(kinetic) = E(nuclear) - E(binding energy of WD)
 ~ 1.8 × 10⁵¹ - 0.5 × 10⁵¹ ~ 1.3 × 10⁵¹ erg

Core-collapse supernovae Type lb/lc

Drout et al. 2011, ApJ, 741, 97

Kinetic energy Type II/Ib/Ic

!! biased sample !!

see eg., MT+09 ApJ, 692. 1131

CAVEAT: luminosity function? (Li et al. 2011, MNRAS, 412, 1441)

Not very biased sample

Galactic SN rate ~ I SN / I00 yr ??

Type la SN E = 1.0-1.5 x 10⁵¹ erg

Core-collapse SN $E = 10^{50} - 10^{52} \text{ erg}$ $\langle E \rangle = 10^{51} \text{ erg} ??$

Overall picture of CR acceleration?

Optical Observations of Supernovae Current Status and Future

超新星爆発:可視光観測の現状とこれから

Supernova rate and kinetic energy
SNR type and distance
Future opportunities

How to find echoes

4 arcmin

Rest et al. 2008

Tycho's SN = Type la

Cas A = Type IIb (thin H layer)

More typing (future)

Distance to Tycho's SNR

distance modulus = [m(obs) - extinction] - M(abs) = (-4.0 ~ -4.5 mag) Tycho Brahe (1603) - (1.86 +- 0.2 mag) Extinction toward SNR - (-19.0 +- 0.3 mag) Standard luminosity of Type Ia SNe

d = 3.8 (+1.5 -0.9) kpc

Hayato et al. 2010

A promising method (future)

Polarization maximum

Distance!

 $z = \frac{\rho^2}{2ct} - \frac{ct}{2}$

Ζ

$\rho = D \sin \alpha$

V838 Mon d = 6.2 +- 1.2 kpc

Light echo

Chandra, X-ray

SNR typing - Tycho - Cas A

<u>Future</u> More typing (Kepler, Crab, ...) Geometric distance

Optical Observations of Supernovae Current Status and Future

超新星爆発:可視光観測の現状とこれから

Supernova rate and kinetic energy
SNR type and distance
Future opportunities

Opt/IR surveyor (I-2m class) Euclid (2017-) 0.5-2 um WFIRST (?-) 0.7-2.5 um WISH (?-) I-5 um

SPICA (2022?-) 5-200 um

JWST (?-) 0.7-25 um

2010

8-10m telescope

Hyper Suprime-Cam 2013- (Urata-san)

TMT: Thirty meter telescope

0.01 arcsec resolution! @ NIR (better than JWST)

H alpha filame

Lee et al. 2010, ApJ, 71

At 4 kpc 1 arcsec = 6 x 10¹⁶ cm 0.1 arcsec = 6 x 10¹⁵ cm 0.01 arcsec = 6 x 10¹⁴ cm

KPNO 2007

HST 2008

Optical Observations of Supernovae Current Status and Future

超新星爆発:可視光観測の現状とこれから

Supernova rate and kinetic energy
SNR type and distance
Future opportunities