Particle Acceleration and Emission Regions of Gamma-Ray Pulsars

Shota Kisaka (ICRR, Univ. of Tokyo)

with Norita Kawanaka (Hebrew Univ. of Jerusalem) Toshio Terasawa (ICRR, Univ. of Tokyo) Takayuki Saito (MPI)

Outline

- 1. Introduction
- 2. Acceleration region : Pair-starved MSPs
- 3. Emission region : sub-TeV emission region

Structure of pulsar magnetosphere

Rotating magnet \rightarrow Unipolar induction $\rightarrow E_{||}$ screening \rightarrow Magnetosphere

Basic concept (Goldreich & Julian 1969) Θ Light cylinder Θ Θ Θ Null line Θ Θ Θ Ð Ŧ Ð Ð

To maintain the force-free condition, following processes work in some regions.

- Particle acceleration
- Particle supply (particle creation)
- E_{||} screening (ρ & J adjustment)

Structure of pulsar magnetosphere

Rotating magnet \rightarrow Unipolar induction $\rightarrow E_{||}$ screening \rightarrow Magnetosphere

To maintain the force-free condition, following processes work in some regions.

Particle acceleration

 \rightarrow GeV γ -ray

- Particle supply (particle creation)
 → IR ~ X-ray
- E_{||} screening (ρ & J adjustment)
 → Radio ?

Structure of pulsar magnetosphere

Rotating magnet \rightarrow Unipolar induction $\rightarrow E_{||}$ screening \rightarrow Magnetosphere

To maintain the force-free condition, following processes work in some regions.

- Particle acceleration
 - \rightarrow GeV γ -ray (e[±] CR ?)
- Particle supply (particle creation)
 - \rightarrow IR ~ X-ray (& TeV γ -ray ?)
- E_{||} screening (ρ & J adjustment)
 → Radio ?

Problems

 Outer gap model cannot reproduce observed γ-ray light curves in some millisecond pulsars (MSPs).

 VERITAS and MAGIC detected sub-TeV pulsed emission from Crab pulsar.

Unusual γ-ray light curve

Two MSPs show unusual light curves that the γ-ray peak lead the radio peak. Young γ-ray pulsars do not show such light curves.

Guillemot (2009)

Pair-Starved Polar Cap (1/2) Muslimov & Harding (2004) suggest that most MSPs can not produce pairs through curvature radiation. In this case, particle acceleration can occur in almost open field volume (Pair-Starved Polar Cap model).

Pair-Starved Polar Cap (2/2)

The model that have extended particle acceleration region can explain observed light curves.

Conditions for radio-emitting region In general, people have believed the conditions of a primary beam with $\gamma_b \sim 10^7$ and $n_b \sim n_{GJ}$, and a secondary e^{\pm} with $\gamma_p \sim 10-10^3$ and $n_p \sim 10^3-10^5 n_{GJ}$ in the radio-emitting region.

However, the existence of pair-starved MSPs suggests that radio emission mechanisms should be insensitive to the particle number density down to sub-GJ one. Therefore, further verification is important.

Acceleration

Assumptions

- In the wind region,
- the energy equipartition between B and e[±].
- the flux conservation of B and e[±].

Typical energy is related to the number of particles.

$$\varepsilon_e = e\Delta V_{\max}\kappa^{-1} \sim 50\kappa^{-1}$$
TeV

Propagation of e[±] cosmic ray $\frac{\partial}{\partial t}f(t, r, \epsilon_e) = D(\epsilon_e)\nabla^2 f + \frac{\partial}{\partial \epsilon_e}\left(P(\epsilon_e)f\right) + Q(t, r, \epsilon_e)$ Diffusion coefficient $D(\varepsilon_e) = D_0 (1 + \varepsilon_e/3 \text{GeV})^{\delta}$ **Cooling function** $P(\varepsilon_e) = \frac{4\sigma_T \varepsilon_e^2}{3m_e^2 c^3} \left[\frac{B^2}{8\pi} + \int d\varepsilon_\gamma u_{\text{tot}}(\varepsilon_\gamma) f_{\text{KN}}\left(\frac{4\varepsilon_e \varepsilon_\gamma}{m_e^2 c^4} \right) \right]$ Source function $Q_0(\varepsilon_e, \tilde{t}) \propto \varepsilon_e^{-\alpha} \exp\left(-\frac{\varepsilon_e}{\varepsilon_{\text{cut}}}\right) \left(1 + \frac{\tilde{t} - t_i}{\tau}\right)^{-2}$ Assumptions MSPs are single population. Source function is mono-energetic distribution. Spectrum

$$f_{\text{ave}}(\varepsilon_e) = \int_0^{t_0} dt_i \int_0^{a_{\text{diff}}(\varepsilon_e, \varepsilon_{e,i})} 2\pi r dr f(t_0, r, \varepsilon_e; t_i) R$$

R ~ 3×10⁻⁹ kpc⁻²yr⁻¹ : local birth rate

Do Sub-TeV emission regions locate inside the light cylinder ? or outside ?

γ-B absorption Lee et al. (2010)

The value of the last escaping radius for a 400(120) GeV photon is $0.5(0.35) R_{lc}$.

Geometrical modeling Assumptions

- Magnetic field : Rotating dipole
- Emission direction : Along the particle trajectory
- Emission region : r_{null} < r < R_{lc} (Outward)

Emissivity

: Constant

:α

: 7

 r_{null} : Distance to null surface R_{lc} : Light cylinder radius

f=1.0

We focus on the peak phases of the light curve.

Parameters

- Magnetic colatitude : $f \Xi r_{pc}/r_{pc,0}$
- Inclination angle
- Viewing angle

Emission region in outer gap

The distance distribution

from NS to emission regions

Peaks include photons emitted from relatively far region.

Emission region in outer gap

The distance distribution

from NS to emission regions

Φ

Peaks include photons emitted from relatively far region.

All photons at leading side of second peak come from the closest region in the magnetosphere.

We can exclude the photons from outer region when we use photons in phase < φ_peak - 0.05.
Photons from the closest region from NS are included in phase φ_peak - (0.05 - 0.15).

Constraint for outer gap model

Prospects

- 1. If the spectrum have the power-law component... outer gap \rightarrow Constraint for geometrical parameters.
- 2. If the spectrum show the strong cut-off... outer gap → Constraint for the altitude of emission region. cold wind → Constraint for the anisotropy of the particle distribution in pulsar wind.
- 3. If the spectrum do not have the power-law component... outer gap → Constraint for the condition of IC. cold wind → Constraint for the anisotropy of the particle distribution in pulsar wind.

Summary

- Outer gap model cannot reproduce observed γ-ray light curve in some MSPs.
- → CTA can detect the evidence of the existence of pair-starved MSPs in the e[±] cosmic ray spectrum.
- VERITAS and MAGIC detected sub-TeV emission from Crab pulsar.
- → CTA can restrict the emission region using the spectrum at the phase of the bridge.