Gamma-ray Opacity Map of the Milky Way Galaxy with CTA

Yoshiyuki INOUE (Kyoto)

Akira Okumura (Nagoya), Stefan Funk (SLAC)

for the CTA Collaboration

Current VHE Gamma-ray Sky

■~60 銀河系内天体。

Cherenkov Telescope Array (CTA) Project

http://www.cta-observatory.jp/

CTA 計画(チェレンコフ望遠鏡アレイ計画)

従来より一桁高い感度 広いエネルギー領域 1000を超えるガンマ線源が

銀河系内・系外に発見されると予想される

Simulation 銀河面スキャン(HESS and CTA)

Gamma-ray Absorption

- VHE gamma-rays are absorbed by ambient photon field. Y(>VHE)+Y(opt-IR)→ e⁺+e⁻
 - typical wavelength : $\lambda \sim 1.24 (E/{
 m TeV}) \mu{
 m m}$
- This leads to softening and cutoff in gamma-ray spectra of distant sources (e.g. blazars).

Extragalactic Sources

VHE Gamma-ray Absorption

Extragalactic Background Light

YEB

IACT

blazar

VHF

 High redshift AGNs and GRBs enables us to study the cosmic star formation history.

A Distant Fermi Blazar

- Spectrum is simply extrapolated from the Fermi data (Γ=2.11).
- >20 blazars at z>1.

A new probe of reionization epoch: GeV gamma-ray attenuation

Y(>GeV)+YUV \rightarrow e⁺+e⁻. GeV flux attenuated by high-z UV background (Oh '01, Gilmore+09, S.Inoue+09).

Constraints on first star/galaxy formation.

GRBs at z>6 by CTA ?

Galactic Sources

MC simulated Galactic plane map

Expected Source Counts

- 20-70 SNRs (>3mCrab, ||<60°, |b|<5°)
 - Assume 2.5 SNe/century & VHE dominant of 5 kyr
- 300-600 PWNe (>3mCrab, ||<60°, |b|<5°)
 - Assume 40 kyr lifetime
- 200 sources in ||<30°, |b|<0.5° (~3 sources/deg²)
 - cf. ~500 AGNs are expected in the entire sky
 (YI, Totani, & Mori '10, CTA-AGN in prep., CTA-Survey in prep.).

Gamma-ray Opacity of the Milky Way

- Same as EBL, Galactic interstellar radiation field (ISRF) would absorb VHE gamma-rays (Moskalenko+'06,Zhang+'06).
 - Is it possible to see the PeV CR signature with CTA, HAWC, or LHAASO?
 - Is it possible to constrain the 3-D Galactic ISRF with CTA?

ISRF of the Galaxy

- ISRF model by GALPROP (Porter+'08).
 - Large uncertainty in modeling.
 - e.g. Cylindrical approximation for the 3-D ISRF map.

Optical Depth: Distance (*I*, *b*) = (0, 0)

Absorption is significant above 30 TeV at >4 kpc away from us.

Optical Depth : Coordinate Distance = 8.5 kpc

Galactic Center @ 8.5 kpc w/ CTA (100 hr)

absorption signature at >20 TeV

- it would be difficult to see >100 TeV gamma-rays
 - hard to see signatures of PeV CRs with distant sources

Galactic Center w/ CTA (100 hr)

GC with H.E.S.S. (100 hr)

■ CTA の有効面積の1/10を仮定。

■ H.E.S.S. クラスでは吸収の兆候を探るのは厳しい。

G0.9+0.1(PWN) @ 8.5 kpc w/ CTA (100 hr)

Crab @ 2kpc w/ CTA (100 hr)

Absorption would not affect nearby sources.

Future Works

- 1.Deabsorbed spectra catalogs of Galactic TeV sources are required for the opacity map.
 - Population studies of the Galactic sources

2.Do created e⁺e⁻ pairs contribute to the Galactic e⁺e⁻ spectrum?

Summary

• CTA will detect ~300 galactic sources.

 Gamma-ray absorption is significant at >4kpc above 30 TeV for CTA.

 Gamma-ray opacity map would be a key to understanding the Galactic ISRF map.

To search PeV CRs, deep observations of nearby sources are preferred.