

Fermi GeVガンマ線衛星 による3年間の成果

Sep. 30, 2011@ICRR (Multi-Messenger Astrophysics and CTA) T. Mizuno (広島大学 理学部-> 宇宙科学センター) On behalf of the Fermi-LAT

collaboration

Fermi_CTAmeeting_2011-09.ppt Fermi_Space Telescope

- Fermi = LAT + GBM
- LAT = "GeV" Gamma-ray Space Telescope (20 MeV ~ >300 GeV)

Cape Canaveral, Florida T. Mizuno et al.

1873 sources Abdo+, ApJS submitted arXiv:1108.1435

2/27

- New Dataset and Response (Pass7)
 - Improved Aeff in low Energy
 - In-orbit calibration of PSF

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

1 year Integral Sensitivity (>10GeV): ~0.05 Crab (Atwood+09)

Publications by Fermi-LAT members

Fermi CTAmeeting 2011-09.ppt **2FGL: Second Source Catalog** Dermi Gamma-ray Space Telescope

- 1873 sources (~4 σ significance) ullet
 - 127 firm identifications and 1170 reliable associations

please pay attention to flags (e.g., 126 possibly confused with diffuse emission)

- # of sources exponentially increases in GeV
- Future: 1000 sources in TeV by CTA!?

- # of known blazars and pulsars continue to grow
- 12 spatially extended sources (LMC/SMC, SNR and PWN)

Publications by Fermi-LAT members

(Cat I+II+III, as of mid-Sep. 2011)

T. Mizuno et al.

Publications by Fermi-LAT members

(Cat I+II+III, as of mid-Sep. 2011)

T. Mizuno et al.

- Local diffuse emission is compatible with directly measured CRs
- "dark gas" is confirmed by Fermi-LAT data
- More CRs than expected in outer Galaxy

Abdo+10, ApJ 710, 133 Ackermann+11, ApJ 726, 81

 Freshly-accelerated CRs in Cygnus region

- Very rich region of massive-star formation at 1.4 kpc
- Two sources + diffuse emission at TeV (MILAGRO)
 - correlation with matter density
 - diffuse flux exceeds the prediction by local CR

- Very rich region of massive-star formation at 1.4 kpc
- Cyg OB1 association seen by VERITAS
 - CTB87 resolved
 - plus complex region, likely powered by multiple sources
 (Good PSF is essential)

- Very rich region of massive-star formation at 1.4 kpc
- Detailed study by Fermi-LAT
 - GeV diffuse (on average) consistent with local CR spectrum, despite the conspicuous star formation activity

- Very rich region of massive-star formation at 1.4 kpc
- Known sources and diffuse gammas subtracted
 - Extended hard (>10 GeV) excess revealed in OB2 association
 - Spatial relation with infrared suggests the interstellar origin

- CRs with local spectrum are too weak or too soft
- Hard, freshly accelerated CRs are required
 - E^{-2.4} (hadron) or E^{-2.7} (lepton)
 - their origin and propagation to be studied by GeV/TeV obs.

- High gas density and star-formation rate
- Detected by H.E.S.S. (NGC 253) and VERITAS (M82) in TeV

- High gas density and star-formation rate
- Detected by H.E.S.S. (NGC 253) and VERITAS (M82) in TeV
- Hard spectrum by Fermi+IACT

- LMC, SMC and M31 detected by Fermi-LAT
- Correlation between SFR and Lγ over wide range in galaxy properties.
- Lγ less correlated with gas mass.

- A sample of 69 is examined: confirm the relation between star-formation rate and Lγ
- SFR-Lγ relation and hard spectrum implies hadron calorimetry

In 3 years

Summary of LAT GRBs

GRB Name	GBM T90	N Pred. Events (>100MeV, Trans.)	HE Delayed Onset?	Long Lived HE Emission?	Maximum Energy (GeV)	Arrival time of the highest events (seconds since trigger)	Redshift	• 32 GRBs b
GRB080825C	Long	10	1	1	0.6	28.3	-	19 with >10 above 100 A
GRB080916C	Long	188	1	1	13.2	16.5	4.35	
GRB081006	Long	13	1	1	0.8	1.8	-	UDUVE 100 //
GRB081024B	Short	11	1	1	3.1	0.6	-	
GRB081207	Long	LLE	-	-	-	-	-	
GRB090217	Long	17	1	1	1.2	179.1	-	• MOST OT G
GRB090227B	Short	3	-	-	0.0	0.0	-	delayed HE
GRB090323	Long	30	1	1	7.5	195.4	3.57	delayed TIL
GRB090328	Long	50	1	1	24.5	261.7	0.736	and HE afte
GRB090510	Short	186	1	1	31.3	0.8	0.903	
GRB090531B	Short	LLE	-	-	1.6	115.2	-	
GRB090626	Long	LLE	1	1	2.1	111.6	-	 Some burs
GRB090902B	Long	314	1	1	33.4	81.8	1.822	
GRB090926	Long	249	1	1	19.6	24.8	2.106	an extra spe
GRB091003	Long	~30	1	1	2.8	6.5	0.897	o o un no no nt
GRB091031	Long	15	1	1	1.2	79.8	-	component
GRB100116A	Long	14	-	1	13.1	296.4	-	
GRB100225A	Long	LLE	-	-	-	-	-	
GRB100325A	Long	6	-	1	1.9	71.4	-	
GRB100414A	Long	27	1	1	4.7	288.3	1.368	
GRB100724B	Long	22	-	-	0.2	61.8	-	
GRB100728A	Long	4	-	-	0.1	81.2	-	
GRB100728A	Long	LLE	-	-	0.1	81.2	-	
GRB101014A	Long	LLE	-	-	-	-	-	
GRB101123A	Long	LLE	-	-	-	-	-	
GRB110120A	Long	5	-	-	1.8	72.5	-	
GRB110328B	Long	LLE	-	-	1.6	514.7	-	
GRB110428A	Long	17	1	1	2.6	14.8	-	Preliminary
GRB110529A	Short	LLE	-	-	-	-	-	- - - - - - - - -
GRB110625A	Long	12	-	1	2.4	272.4	-	
GRB110721A	Long	29	-	1	1.7	0.7	0.38	
GRB110731A	Long	65	1	1	3.4	436.0	2.83	

Bs by LAT, >10 ys 00 MeV

of GRBs show HE onset afterglow

bursts have a spectral ent

GRB 080916C (long)

Abdo et al. 2009, Science 323, 1688

- **Delayed HE onset and** temporary extended emission are commonly seen
- Some GRBs show extra spectral • component (090510, 090902B, 090926A)

1500

• LAT Aeff ~ $0.8m^2$ (<10⁻⁴ of CTA Aeff)

• Large Aeff is of great benefit to study extra component, extended emission and quantum Gravity.

T. Mizuno et al.

Flux [ph cm⁻² s⁻¹ × 10⁻⁵(> 100 MeV) × 1 (50-300 keV)

Photon Index

22/27

3000

- ~1 GRB/yr
- Energy threshold is important

Fermi_CTAmeeting_2011-09.ppt Caution on Detection Rate Estimate

- 10% of GBM GRBs in LAT FOV are detected by LAT
 - lower than expected (single PL), particularly in GeV
 - GBM+LAT joint fit leads to softer β

- ten 2FGL sources are now identified as, or associated with SNR (# of possible association ~60)
- Hadronic scenario is usually favored

- GeV γ-ray excess above diffuse emission correlates with TeV γs
- Broadband spectrum favors leptonic origin as the emission mechanism

- ・フェルミは順調に観測.高い生産性.
- ・最近の成果をいくつか紹介
 - 加速されたばかりの宇宙線 in Cygnus Region
 - 星生成銀河のSFR-Lγ 関係
 - SNRのGeV/TeVスペクトルと放射機構
- ・いずれもTeVのデータが重要
- ・GRBもCTAへの期待大.見積もりには注意.

Thank you for your Attention

Backup Slides

29/27

 γ-ray excess fills the cavities carved by stellar winds and ionization fronts

Extended excess (>10 GeV) is revealed

31/27

FIR vs. Radiocorrelation

- MW is nearly a CR electron calorimeter, if IC is taken into account
- Conversion eff.
 ~1% for protons

The Fermi Observatory (2008-)

Gamma-ray Space Telescope Fermi_CTAmeeting_2011-09.ppt

- CTA performance (Eff. Area + Bkg Rate) estimated from simple scaling of VERITAS performance
- CTA baseline: 4 LSTs (Eth = 25 GeV) + 25 MSTs
- CTA optimistic: 4 LSTs (Eth = 10 GeV) + 75 MSTs (+ 3 times lower bkg rate)
- $E_{th} = E_{th}(Zenith=0) \times cos(Zenith)^{-3.0}$

緑のコントアは衝撃波に励起された分子雲

高密度の分子雲からγ線が放射

