Large mm/sub-mm Single Dish Telescope

Ryohei Kawabe Nobeyama Radio Observatory (NRO) National Astronomical Observatory of Japan (NAOJ)

Roles of NRO in ALMA Era

- Enhancing Science with 45m/ASTE toward ALMA Era
- New Developments to create new seeds for the future
- Planning a Large mm/sub-mm Single dish for opening new discovery space in ALMA/SKA- era

ALMA will come soon!

ALMA CSV Test Images

テスト画像1:渦巻銀河NGC253(左:可視光)(中央)230GHzの CO(2-1)輝線画像(右)690GHzの連続波画像とCO(6-5)輝線画像

テスト画像2:ホットコア分子雲634.26+0.15の画像と周波数100GHz付近の分光スペクトル。多数の輝線が見える。

テスト画像3:がか座ベータ星の円盤。(左)天文衛星ハーシェル テスト画像 の70μm画像(01ofsson他)。(右)870μmのALMAテスト画像。 μm電離炭

テスト画像4:赤方偏移z=4.431のクエーサーBRI 0952-0115の画像と158 µm電離炭素輝線の分光スペクトル。

45m & ASTE Synergies create excellent SEEDs for ALMA Science

45m Legacy Programs

Gas and Dust in M33 AzTEC/ASTE Key Science Programs

AzTEC 1.1m

SMG Survey

45m & ASTE Synergies create excellent SEEDs for ALMA Science

SMG Survey Wide Field Survey IS Gas and Pust in M33 a Key In Action Key Science Programs

1.1 mm survey of Starforming Regions AzTEC 1.1m

M51 CO(1-0) NRO 45m (BEARS+OTF) + CARMA

NRO 45m

Koda, Sawada + 2009

Outline

- Sub-millimeter Cosmology & "SMGs"
- SMG Survey with AzTEC/ASTE
- New Science with New Single Dish Telescope
- Synergies with other telescopes

AzTEC 1.1 mm camera

Why are submm galaxies (SMGs) so important?

Cosmic Infrared Background

Cosmic star-formation history

Large-scale structure Dark matter

Cosmology, Galaxy Formation (large area of the sky)

Formation of Giant ellipticals

"Galaxy Zoo"

Formation of Super-massive black hole Quasar Galaxies and SMBHs (large sample)

Submillimeter Cosmology

- ULIRGs found in local universe by IRAS
 - Starburst due to merging of disk gals; e.g., Arp220
 10¹² L_{solar}; radiating its energy (>90%) at FIR (dust thermal emission), & SF Regions heavily obscured
- Submillimeter wavelength (~0.5 1 mm) has a very unique characteristic; <u>negative-K correction</u> allows us to reach such ULIRGs to z ≈ 10 ! (proposed by Blain & Longair, 1993)
- Submillimeter blank sky survey discovered high-z and very dark (in optical) massive starburst galaxies, i.e., <u>Submillimeter Galaxies (SMGs)</u> (e.g., Hughes et al., Nature, 1998)
 Bright at (sub)millimeter L_{IR} ≥ 10¹²⁻¹³ L_{sun} SFR ≈ 100-1000 M_{sun}/yr Massive M_{dyn} ≈10¹¹ M_{sun}; M_{gas} ≈ 10¹⁰⁻¹¹ M_{sun}

Ground-based large SD at 850-1200 um

SMG & Cosmic IR Background (CIRB) CIRB is extragalactic background (by dusty SF gals) - > 90 % of Optical BG was resolved into gals Only ~ 10 % of sub-mm BG was resolved to SMGs Key issues for the understanding of CIRB alactic Backaround - What & where is the other 90 % of CIRB? - What is redshift distribution of CIRB sources? SCUBA 850µm => related to cosmic SF

SMG and Cosmic Star Formation History

SMG is a Key to unveil hidden Star Formation (SF) & Cosmic SF History

Cosmic SFR peaks at z~3 ? ; hidden SF is expected

Large Scale Structure & SMG Clustering

 SMG is a massive starburst galaxy at high-z & will be associated with massive Dark Matter halo

=> Clustering of SMGs

=> tracing LSS invisible in opt/IR

- Dark Matter Halo firstly formed
- DM Halos evolve to form <u>LSS</u> through "Hierarchical" Structure formation
 - Baryonic matter collapses into DM Halo to form galaxies; evolving to massive by merging

N-body simulation (Dark matter)

z = 5

z = 2

z = 0

7 = 30

z = 3

z = 1

Yahagi et al. (2005)

AzTEC on ASTE SMG Survey ASTE(Atacama Submm Telescope Experiment)

10 m submm telescope alt. 4860m, Atacama desert, Chile 350 GHz (0.87 mm) spectroscopy: CATS345+MAC/WHSF beam = 22", single pix Iow Tsys & OTF 270 GHz (1.1 mm) continuum: **AzTEC** camera **144 pix** FOV ~8 arcmin, beam = 28"

AzTEC on ASTE SMG Survey AzTEC

144 pix Si₃N₄ micromesh "spider-web" bolometers
PI: G. Wilson (UMASS); Developed for LMT 50m
Wavelengths: 1.1 mm
Spatial resolution: 28 arcsec @ ASTE
Mapping speed: 10-30 arcmin² hr⁻¹ Jy⁻²
Successful operation on JCMT (late 2005)

AzTEC on ASTE SMG Survey Overview

- One of Key Science Projects with AzTEC
- Deep & Wide SMG Surveys in 2007 2008
- spent > 80 % of AzTEC/ASTE time
- reached to mostly confusion noise (0.5 mJy)
- wide fields as much as possible to minimize cosmic variance
- 10-20 time higher mapping speed than SCUBA
 - ; 10-30 arcmin² hr⁻¹ Jy⁻²
 - AzTEC has high sensitivity and stability + good pipeline
 - Excellent Atm. Condition; τ (220 GHz) down to 0.02
- Detected > several x 100 sources with surveys of

> 1 deg2 in total

Blank Field Surveys

 Survey Area - 160 arcmin^2 to 1 deg^2 - 2 deg² in total - wider than SHADES Depth - 0.5 to 1.0 mJy - corresponding to 1-2 mJy at 0.85 mm - deeper than SHADES

AzTEC/ASTE Deep Wide-field SMG Surveys

	AKARI Deep Field South (ADF-S)	Subaru/XMM- Newton Deep Field (SXDF)	SSA22
Coverage (arcmin ²)	909	956	992
Depth (1σ, mJy)	0.43-0.78	0.46-0.87	0.62-1.2
No sources (>3.5σ)	198	206	127
reference	Hatsukade+11a,11 b MNRAS In prep	Ikarashi+10 MNRAS, + 11 in prep.	Tamura+ 09, 10 Nature, 459, 61 ApJ,
ADF-S	Image: state stat		SA 22

AND More; ~ 40 Mass-Biased Fields

2.5<z HzRG proto-cluster

1.5<z<2.5 HzRG

0.5<z<1.5 HzRG

0.5<z<1.5 clusters

z<0.5 clusters

Wilson, Hughes, Yun et al. Ezawa, Oshima et al.

AKARI Deep Field South (ADF-S)

- Near South Ecliptic Pole
- Lowest-cirrus contamination
- Deep AKARI observations
 - IRC: 3.2, 4.6, 7, 11, 15, 24 um
 - FIS: 60, 90, 140, 160 um
- Multi-wavelength follow-up
 - GALEX (UV), CTIO (UBVRI Ks),
 - Spitzer
 - BLAST (250, 350, 500um),
 - LABOCA (870um), ATCA (20cm)
- AzTEC/ASTE Observations
 - 2007-2008
 - central ~1200 arcmin² area

Constraints on *redshifts* of AzTEC/ASTE sources in *ADF-S*

90um/1.1mm flux ratio

Hatsukade + 2011, MNRAS

- \rightarrow most of the AzTEC sources (196 out of 198) : z > 1
- AKARI 90um sources : low-z, AzTEC 1.1mm sources: high-z
- L(FIR) ~ (3-14) x 10¹² Lo, SFR ~ 500-2400 Mo/yr

Comparison with AKARI 90um

- Only one AzTEC source (AzTEC12) is detected at 90um
- others: Upper limit to 90um/1.1mm flux ratio $\rightarrow z \ge 1$
 - AzTEC source: higher L_{IR}, higher z
 - 90um source : lower L_{IR}, lower z

AzTEC12 – WIDE-S#178

- <u>Detected with AKARI at</u>
 - 90 um (WIDE-S)
 - 21 cm (ATCA)
 - $z_{spec} = 0.16$
- Starburst;
 <u>L ~ 3 x 10¹¹</u> L_{solar}
- SFR(H α) ~ 30 M_{sun}/yr
- <u>Stacking Analysis toward</u>
 <u>45 90 um Sources in ADF-S</u>
 - 7 σ 1.1 mm signal
 - <S1.1 mm> ~ 0.6 mJy
 - indication of fainter & Low-z (z <1) population
 - <L> $\sim 10^{11}$ L_{solar}

Observing Wavelength $[\mu\textrm{m}]$

1.1 mm Number Count & CIRB

Hatsukade et al. 2010

- Number count of ADF-S toward much fainter fluxes
 - detected SMG ~ 10 % of CIRB
 - sum-up to 0.01 mJy with Number count ~ 100 %

Angular cross correlation between SMGs & LAEs

A clear detection of cross correlation signal with z=3.1 LAEs
 → detected bright SMGs in SSA 22 are also clustered around z~3 !

"K-drop SMG" with elevated SFR >1000 Mo/yr

 Also Detected a deeply obscured (N_H~10²⁴cm⁻²) hard X-ray source
 → witnessing formation of SMBH as well as massive galaxy formation

Bright (S_{1.1mm}>3mJy) SMGs are *strongly clustered*

Correlation Length and Halo Mass

 Comparison of clustering properties between dark halo model and AzTEC sources

(Sheth & Tormen 99; Mo & White 02)

Mass of Dark Halo hosting bright AzTEC sources: ~ 10¹³⁻¹⁴ Msun

AzTEC/ASTE SMG Survey

- Confusion Limited wide-area SMG survey
- Reaches $\sigma \sim 0.5$ mJy & 2 deg2 in total
- more than 1400 SMGs uncovered; z > 1 for most of them
 - ~ 1 or 2 SMGs every hour observations

Limitation of ASTE

- Limitation of FOV (7.5 arcmin.); future 10 k-pix camera unavailable, & need larger FOV
- Confusion Limited SMG survey
 - ; need smaller beam, which also allows easy source ID
- Small RX Cabin; can accommodate only one/two RXs
- photo-z or spec-z is unavailable

Multi Color TES Camera for ASTE

Main Purposes

- Photo-z estimate for SMGs
- New surveys of SMGs/SF regions
- Collaboration with UCBerkely (A. Lee), Cardiff, McGill, U. Tokyo, Hokkaido U.
- Installation will be in Oct 2011
- <u>Science Oper. From Nov.</u>

Wavelength	No. of pixs	Beam size	FOV (arcmin)
1.1 mm	169	28″	7.5
850 micron	271	22"	7.5
450 micron	881	11"	7.5

野辺山45m鏡搭載・超広帯域3mm帯 分光システムの導入完了

36

l = 16 MHz – 2 GHz

8kHz – 0.5 MHz

- 2 beam 2SB 2polarization
 LO = 86 112 GHz
- IF = 4-8 GHz
 - Beam separation = 45"
 - SIS Receiver "TZ100"

高速A/D "PANDA"

THERE IN ANTION AND AREAD

Spectrometer

"SAM45"

Max 16 IFs4G Sample/sec

国立天文台、東大、

New Single Dish ("ASTE-II")

- D ~ 50m, Freq. = 70 400 GHz (4 mm 750 um)
- FOV of telescope ~ 1 deg
- Mm/sub-mm Camera + MOS/Imaging Spectrometer

Beam size ~ 6" at λ 1mm; easy to ID IR/Radio count.
Source Confusion < 50 μJy; ~ ten times deeper
Redshift Survey by exploiting high-sensitivity & wide
FOV; spec-z of SMG every 10-20 min. each pix

=> spec-z of several x 100 SMGs with 100 pix MOS/hour allows to unveil cosmic star formation history & LSS

Noise level achieved with SD

New Science with New Single Dish ("ASTE-II")

- SMG Redshift Survey
- Cosmic Star Formation History
- Understanding Galaxy Evolution Relation with high-z populations
- Starburst & QSO co-evolution with CO SEDs
- MW Galaxy Formation
- Census & Serendipity
- Survey of Galaxies in EoR?

New Single Dish ("ASTE-II") MOS vs Imaging Spectrometer

MOS; Multi Object Spectrometer

- Based on high-z SMGs uncovered with submm deep survey
- => vey efficient but some bias (samples galaxies@ z> 1)
- Efficiency depends on multiplicity of technology available
 Grating spectrometer, Filter Bank IC, heterodyne array (SIS, HEMT)
- Imaging Spectrometer
- Blank Field Imaging & Spectroscopy; CO ladder and redshifted [CII]
- CO is sensitive to "low-z" star-forming galaxies
- redshifted [CII] + high-J CO are sensitive to the EoR era
- Not efficient for high-z; Efficiency depends on multiplicity of technology available

detector array + FTS, SIS/MEMT Array + Ultra-wide band Spectrometer (A/D + FFT analyzer)

Sensitivity-limited Survey with the New 50m Telescope ("ASTE-II") "CO Tomography"

- 50 m Single Dish equipped with 1000 pix array detectors + spectrometers (covering ~ 70 GHz to ~ 345 GHz)
- 1000 hours observations in Chile ALMA site
- Area= 2 sq-deg, 10 sq deg, or .
- Extracting galaxies with at least one CO line detected at > 5σ from CO mock galaxies

(from Tamura-san's work)

Cosmological CO Tomography Mock CO-emitting Galaxies

- S³-SAX: A catalog of mock CO-emitting galaxies (Obreschkow et al.)
 - based on dark matter skeleton at redshift out to 10, which has been constructed in the Millennium simulation.
 - Semi-analytic modeling of galaxy mergers, stellar populations, MBH growth are treated in DeLucia07, Croton+06.
 - assign radial profiles of HI and H₂ density in each galaxy

Obreschkow+09b

Mock observing cone in the Millennium Simulation

HI and CO sky realization (1 arcmin², z = 1.0-1.1)

Galaxies with new 50m (ASTE-II)

Volume Density and Number Counts from the 2 deg² survey

Volume Density and Number Counts from the 2 deg² survey

New Science with New Single Dish ("ASTE-II"); GRB etc

GRB Afterglow

- multi-band photometry @70 650 GHz
 Cold dust & gas in host galaxy
 Absorption line search toward GRB Afterglow
- mostly continuous @ 100 400 GHz with R ~ 1000
- Spectroscopy with R $\sim 10^5$
- AGN time variability
- MW galaxy mapping; 10 sq-deg. To > 1000 sq-deg.

SPICA/ISAS/JAXA

Synergies

Litebird/KEK

Inflation to Dark Age

Technolog

11

Mm to FIR Camera Origin of Life Imaging Spectroscopy

CMB Secondary

ALMA & "ASTE-II" (JP Univ./NAOJ)

Summary

A New Large mm/Sub-mm Single dish Telescope (in Chile)
Baseline Plan; D ~ 50 m & Freq. = 70 – 400 GHz

New Science with Wide FOV & Wideband Spectroscopy

Completion around 2020? Synergies with ALMA, SPICA, SUBARU Litebird, SKA ...CTA...

