

### *Fermi* LAT Observations of GeV Gamma Rays from Supernova Remnants

Hide Katagiri (Hiroshima Univ) on behalf of Fermi LAT collaboration Nov 16, 2010 Gamma-ray astronomy workshop@ICRR

### **Observations of GeV gamma rays from SNRs**

#### SNR RX J1713.7-3946

#### Aharonian et al. (2006)

#### **Leptonic model**

#### **Hadronic model**



- Observations of GeV gamma rays are crucial for study of cosmic-ray acceleration in SNRs
  - Parent particles, momentum spectrum, diffusion...



- The uncertainty of position determination accuracy ~ 1deg. due to degree-scale PSF and low statistics
- Point-source or extended?
- Spectral studies at > a few GeV are limited due to the small effective areas.

### Fermi Gamma-ray Space Telescope

International collaboration between US, Europe, and Japan
 Launched on June 11 2008 (its science data is public now)
 Consists of LAT and GBM

#### Large Area Telescope (LAT)

Tracker (16 towers): - Pair conversion telescope → Tungsten conversion foils - Measures e<sup>-</sup>/e<sup>+</sup> track with Si-strip detectors

- Better PSF (~0.6°@1GeV)
- Large Eff. Area & 2.4 sr FoV
- ~20 MeV < E < ~300 GeV</p>

 γ incoming gamma ray

 Image: Comparison of the second se

Calorimeter: -1536 CsI crystals -Measures photon energy

Anti-coincidence detector:

- Segmented
- Vetos CR background



Source ID & extensionEmission mechanism



- **10** SNRs so far (W28, W49B, RX J1713-3946, G8.7-0.1, ...)
- Two categories
  - Young (<~2000yr) SNRs (Cas A, RX J1713-3946)</p>
  - Relatively old SNRs with molecular clouds (W28, W44, W49B, W51C, IC443, etc.)

## Sermi Young SNR ~ Cas A

Historical supernova: age=330yr

Gamma-rav Space Telescope

- The brightest radio source in our Galaxy
  - -> efficient particle acceleration
- TeV gamma rays detected by HEGRA, MAGIC, VERITAS



5'

Cannot be distinguished on positional grounds No gamma-ray pulsation, no time variability No pulsar-like cutoff on the spectrum

GeV gamma rays  $\sim$  from the SNR shells.

Abdo et al. (2009)

**Corresponding Authors (CAs): Funk, Uchiyama** 

#### Sermi Spectrum of Cas A Gamma-ray ladronic eptonic 10-10 EGRET EGRET Fermi-LAT Fermi-LAT 0.12 m@ √f, [erg cm<sup>-2</sup> s<sup>-1</sup>] √t<sub>\*</sub> [erg cm<sup>-2</sup> s<sup>-1</sup>] 10-11 10-11 MAGIC MAGIC 0.3 mG 10-12 10-12 10-13 10-13 1014 1010 10 12 108 1010 10 14 108 1012 E [eV] E [eV]

- Leptonic scenario (Brems + IC):
  - B = 0.12 mG, We=1×10<sup>49</sup> erg

- Hadronic scenario ( $\pi$ 0 decay):
  - B > 0.12 mG, Wp=3×10<sup>49</sup> erg
  - Good fit with proton spectral index ~2.3
  - (red) or ~2.1 (blue) with cut-off at 10 GeV
- The hadronic scenario can better fit the data (but not conclusive due to the systematics)
- W<sub>CR(e+p)</sub>=1-4×10<sup>49</sup> erg regardless of the parent particles.
- B > 0.12 mG -> B amplification at the shock

#### Castelletti+07



Lines from H2 gas (Spitzer) Radio synchrotron (VLA) ★ OH masar spots



- Mixed morphology SNR
- Age ~2 x 10<sup>4</sup>yr
- Distance ~3kpc
- Interactions with molecular clouds



Black cross: location of PSR B1853+01, Green contours: Spitzer IRAC 4.5 µm

 Results of maximum likelihood analysis also prefer ring-like morphology rather than centrally filled morphology (> 8 σ)

### LAT spectrum & modeling



- $\pi^{0}$ -decay model can explain the data well
  - Leptonic scenarios have difficulties
    - Brems: difficult to reconcile with the radio data
    - IC: large amount of electrons (~10<sup>51</sup>ergs)
- Protons need to have a spectral break at ~ 10 GeV/c
  - Possible explanation: Fast escape of high energy particles with damping of magnetic turbulence due to the dense environment (e.g. Ptuskin & Zirakashvili 2003)

### **Comparison of energy spectra**



 Different evolutionary stages allows us to probe how particles are accelerated and later released into the Galaxy

### W28 (G6.4-1.0)

#### **ROSAT X-ray images** with HESS TeV contors



Mixed-morphology SNR

- Old age ~35000-150000yr
- Distance 1.8-3.3kpc
- TeV detected by HESS
- South TeV sources are spatially coincident with star forming regions.

#### Aharonian et al. (2008)

### **Association with molecular clouds**



Most outstanding in the gamma-ray (HESS) – CO correlation among SNRs.

#### 2-10GeV with NANTEN CO(J=1-0) contours



### LAT view

#### Abdo+10 (CAs: Katagiri, Tajima, Tanaka, Uchiyama)

- The GeV emission is extended, overlapping with molecular clouds
- Spectral steepening with a break ~1GeV.
- π<sup>0</sup>-decay in dense molecular gas
   provides a reasonable
   explanation for the broadband
   gamma-ray spectrum (similar to
   W44, etc.).
- The compact HII region W28A can be a possible energy source with extremely high density  $(\sim 10^7/cc)$ .

Mosaic: FERMI(1pixel=0.025deg. Smoothing Gaussian kernel=0.2deg.)
Contours: NANTEN (CO J=1-0) v=0-20km/s (25, 50,75%)
Diamonds : HII regions



### **Comparison** with TeV

 Upper limits in the GeV band on HESS J1800-240A, C

Mosaic: FERMI(1pixel=0.025deg. Smoothing Gaussian kernel=0.2deg.)
Contours: HESS excess map (20, 40, 60, 80%) with smoothing (Gaussian kernel=0.1deg.)
A,B,C=HESS J1800-240A,B,C, Diamonds : HII regions

### **Runaway CRs?**



 Nearby clouds (surrounding material)

Distant clouds

GeV < TeV</li>

#### GeV-TeV spectrum allow us to study CR diffusion.

FIG. 1.—Gamma-ray spectra from the SNR (*top*) and from a cloud of  $10^4 M_{\odot}$  located 100 pc away from the SNR (*bottom*). The distance is 1 kpc. Curves refer to different times after the explosion: 400 yr (*curve 1*), 2000 yr (*curve 2*), 8000 yr (*curve 3*), and  $3.2 \times 10^4$  (*curve 4*) yr.

GeV > TeV

# SNR with TeV & MCs ~G8.7-0.1

#### Abdo et al. (CAs: Hanabata, Katagiri), to be submitted



- Yellow cross: PSR J1803-2137
- Green cross: Suzaku J1804-2140
- Extended GeV emission
- Spatially associated with some molecular clouds
- With relatively bright TeV emission (~25% Crab)

### **Theoretical activities**

#### Runaway CRs (e.g., Fujita+10, Ohira+10) See Ohira-san's talk

- CRs escaping from SNR and colliding with nearby MCs
- "Crushed cloud" scenario (Uchiyama+10)
  - Gamma rays coming from "cloud shock" (CRs and MC simultaneously compressed)
  - Spectral break: Ion-neutral collision → Damping of Alfvén wave
  - Radio-GeV correlation naturally explained

Blastwave





Etc.



### **Summary of the LAT SNRs**

#### **Compiled by Uchiyama**

| Object     | Diameter | Age       | Cloud<br>Interaction | Lγ<br>1-100 GeV          |  |
|------------|----------|-----------|----------------------|--------------------------|--|
| Cas A      | 5 pc     | 330 yr    | No                   | 4x10 <sup>34</sup> erg/s |  |
| W49B       | 10 pc    | ~3000 yr  | Yes                  | 9x10 <sup>35</sup> erg/s |  |
| 3C 391     | 15 pc    | ~6000 yr  | Yes                  | 6x10 <sup>34</sup> erg/s |  |
| G349.7+0.2 | 17 pc    | ~6000 yr  | Yes                  | 9x10 <sup>34</sup> erg/s |  |
| IC 443     | 20 pc    | ~10000 yr | Yes                  | 8x10 <sup>34</sup> erg/s |  |
| W44        | 25 pc    | ~10000 yr | Yes                  | 3x10 <sup>35</sup> erg/s |  |
| W28        | 28 pc    | ~10000 yr | Yes                  | 9x10 <sup>34</sup> erg/s |  |
| CTB 37A    | 50 pc    | ~20000 yr | Yes                  | 9x10 <sup>34</sup> erg/s |  |
| G8.7-0.1   | 63 pc    | ~30000 yr | Yes                  | 8x10 <sup>34</sup> erg/s |  |
| W51C       | 76 pc    | ~30000 yr | Yes                  | 8x10 <sup>35</sup> erg/s |  |

References: Abdo+2009, 2010a, 2010b, 2010c, Castro & Slane 2010

- Some of their emissions are well-explained by pi0 decay by making detailed discussion (spectral modeling , association, etc.).
- Observationally biased to SNRs with clouds so far.
- Deeper observation would provide less-biased samples.

### **Fainter SNRs with deeper** observations ~ Cygnus Loop

**ROSAT X-ray (Aschenbach+99)** 32°



DEC (J2000)

- Middle-aged shell-type SNR
- Large offset from the Galactic plane -> shock regions well-studied by **IR/optical/UV**
- Large size ~ 3°
  - Can be easily compared with other waveband data to study particle acceleration.
- Nearby SNR ~540pc; well-determined by optical filaments (Blair+05)
  - Could leave a unique feature in the CR electron spectrum of 1-2 TeV in the vicinity of the Earth (Koboyashi'03).

#### 0.5-10GeV with ROSAT X-ray contours



### LAT view

Abdo et al. (CAs: Katagiri, Tibaldo), to be submitted

- The largest gamma-rayemitting SNR
  - Detailed morphological study
- Without clear correlation with dense molecular clouds
  - A valuable sample for a particle acceleration

**Right Ascension (J2000)** 

| 0 | 0.1 | 0.2 | 0.3 | 0.4           | 0.5 |  |
|---|-----|-----|-----|---------------|-----|--|
|   |     |     |     | [counts/pixel |     |  |

### Fermi to CTA

- Better source identifications by extension with better PSF (2' at 1TeV)
  - Extension is a useful to constrain a pulsar/PWN hypothesis.
  - Associations with molecular clouds, shells, etc.
- Sensitivities of current
   TeV experiments are not sufficient to search for all
   SNRs in our Galaxy.
  - Most of SNRs would have a steep spectrum, except for young ones.

See Bamba-san's talk (including some quantitative estimations)



\* C, B, E are configurations of telescope arrays.



### Summary

- The Fermi-LAT detected GeV gamma rays from ~10SNRs with 2yr data.
- Two types:
  - (1)Young SNRs, (2) relatively old SNRs with MCs.
- Basically gamma rays are naturally explained by π<sup>0</sup> decay with surrounding material or molecular clouds.
- CR diffusion & environment in acceleration region can be also investigated.
- Deeper observations would provide less-biased samples for study of CRs.
- The CTA will extend detailed studies of CR acceleration to much more SNRs in our Galaxy with better angular resolution & sensitivity.