

広島大学 大学院理学研究科

山崎了

Knee energy (10^{15.5}eV) 以下の宇宙線は 銀河系内の超新星残骸が起源と考えられている。

超新星残骸 (Supernova Remnant = SNR)

H.E.S.S.

超新星爆発後に残る残骸。 約1000年で10pc程度に まで広がる高温(~keV) のガス球。

> 数1000km/sで膨張 する衝撃波(爆風波) に囲まれ、 宇宙線加速が 起こっている。 ← SN 1006 青色:X線

黄色:可視光 赤色:電波

宇宙線の加速源をつきとめるには?

(荷電)粒子の直接観測では難しい。 星間磁場(B~μG)での宇宙線のジャイロ(ラーマー)半径:

 $r_g = E/qB \sim 1pc$ for $E \sim 10^{15} eV$

これは地球から天体までの距離(~kpc)に比べてすごく小さい。

そこで、加速源で 宇宙線の発する電磁波を 観測する必要がある。 (将来はニュートリノも)

CR proton + (target) gas $\Rightarrow \pi^0 \Rightarrow \gamma + \gamma$

- ・エネルギー *E*をもつ proton 1個が放射する γ のエネルギー: h $\nu \sim 0.1 E$ (=> $\nu \propto E$)
- Proton スペクトル:

 $N(E) dE \propto E^{-p} dE$

•放射スペクトル F_{ν} [erg s⁻¹ cm⁻² Hz⁻¹]: $F_{\nu} d\nu \propto E \cdot E^{-p} dE \propto \nu^{1-p} d\nu$ => $\nu F_{\nu} \propto \nu^{2-p}$

CR electron + (target) gas => brems. γ (制動放射) •エネルギー *E*をもつ electron 1個のbrems- γ のエネルギー:

 $h_V \propto E$

より、放射スペクトルは上記と同じ結果($vF_v \propto v^{2-p}$)を得る。

CR electrons によるシンクロトロン・逆コンプトン放射

- ・エネルギー Eをもつ electron 1個の放射する光子エネルギー: h $v \propto E^2$
- ・Electron スペクトル: $N(E) dE \propto E^{-p} dE$
- •放射スペクトル F_{ν} [erg s⁻¹ cm⁻² Hz⁻¹]: $F_{\nu} d\nu \propto E^{2} \cdot E^{-p} dE \propto \nu^{(1-p)/2} d\nu$ => $\nu F_{\nu} \propto \nu^{(3-p)/2}$

Cooling が効く場合、

•放射スペクトル F_{ν} [erg s⁻¹ cm⁻² Hz⁻¹]: $F_{\nu} d\nu \propto E \cdot E^{-p} dE \propto \nu^{-p/2} d\nu$ => $\nu F_{\nu} \propto \nu^{1-p/2}$

TeV gamma- rays from young SNRs

- TeV(=10¹²eV) γ-rays detected by H.E.S.S. TeV's from shock waves of young SNRs --- Direct evidence for 10-100TeV electrons and/or protons !!
- BUT, we don't know whether the TeV emission is hadronic or letonic.

SNRs as sources of Galactic CRs

- Evidence for hadron acceleration?
 - Gamma-rays are leptonic or hadronic?
 - Classical but still important problem
- SNRs are really *PeVatrons* ?
 - When, where, and how to reach $10^{15.5}$ eV ?
- Electron acceleration efficient or inefficient?
 - Nonlinear model predicts $e/p \sim 10^{-5} \ll 1/200$ @Earth...
 - Contribution from pulsars/PWN negligible?
- When, where, and how to disperse CRs into ISM?
 - Lessons from W51C/W44/W28,... and predictions for CTA.
- Acceleration at reverse shock ?
- Nature of TeV unIDs ?
 - middle-aged (old) SNRs, or PWNe?

SNRs as host of strong shocks

- Strong shocks accelerate particles.
 - Plasma physics point of view.
 - Source spectrum is E^{-2} or not?
 - Nonlinear model of particle acceleration.
 - Magnetic field amplification.
 - Injection rate of high-energy particles, e/p ratio,...
 - Application to other objects w/ shocks.
 - Toward interdisciplinary science...
- Particle acceleration at reverse shock.
 - Dependence of different upstream state (low-B?)
 - Non-Fermi process may occurr?

衝撃波粒子加速理論 (フェルミ加速)

Spectral index of accelerated particles

Bell('77), Blandford & Ostriker ('77) :

In the test-particle case (accelerated particles does not affect the background plasma), the energy distribution of particles is given by

$$N(E) dE \propto E^{-p} dE$$
 , $p = \frac{r+2}{r-1}$

where "r" is the shock compression ratio.

(1) $M_s \to \infty$, $\gamma_g = 5/3$, $\Rightarrow r = 4$, p = 2.0(2) $M_s = 10$, $\gamma_g = 5/3$, $\Rightarrow r = 3.88$, p = 2.04(3) $M_s = 4$, $\gamma_g = 5/3$, $\Rightarrow r = 3.37$, p = 2.27(4) $M_s \to \infty$, $\gamma_g = 4/3$, $\Rightarrow r = 7$, p = 1.5

衝撃波周辺で本当に p=2 なのか?

強い衝撃波の極限(M_s>*10)で、宇宙線をテスト粒子として扱えば p=2となるが、以下のような効果を考慮するとpは2からずれる。

- 1. Nonlinear model :
 - a) 宇宙線の「圧力」を考慮すると、衝撃波の圧縮比が あがり、p < 2 となる?
 - b) 増幅された磁場により上流・下流の散乱体の相対速度 が4倍以下となって、p>2となる?
- 中性粒子の影響(Ohira+09):
 圧縮比を下げる効果により、p>2となる。
- 3. Non-diffusive transport (Hada & Otuka, 09):

Sub-diffusive (advection dominated) => p > 2. Super-diffusive (その反対) => p < 2

4. 加速域を抜け出した宇宙線スペクトル

一般に p=2 からずれる(Ohira, Murase, RY 09)。

Gamma- rays from young SNR, Cas A

SNRの淵の部分からガンマ線を検出(12.2 σ)。 スペクトルは Proton起源のような形をしているが、Young SNR (age~340yrs) にもかかわらず、p=2.0で $E_{max}=10^{15.5}$ eV (knee) まで伸びている 兆候は見られない。

Gamma- rays from young SNR, RXJ1713

RX J1713.7-3946 : age~1000yrs のSNR. * スペクトルから、 "1-zone" Inverse Compton model (電子起源)は 苦しくなってきたが、Proton起源であるとは結論されていない。 * p=2.0でE_{max}=10^{15.5}eV (knee) まで伸びている兆候は見られない。

B~mG at RX J1713.7-3946?

Synch. X-ray image

B~mG at RX J1713.7-3946?

Synch. X-ray image

Time-variable synchrotron X-rays observed!!If synch. cooling time ~1yr, B~mG is indicated.(for X-ray emitting electrons, $t_{synch} \sim 1.5(B/mG)^{-1.5}yr$)

Problem: observed dim radio synch.

- If TeV- γ is hadronic (pion decay), $\Rightarrow E_{\text{proton}} \sim 10^{49-50}$ erg.
- If $B \sim 1mG$, $\Rightarrow E_{electron} \sim 10^{44} \text{ erg}$ (via synch. radio/X).
- \Rightarrow Extremely small e/p ratio, $K_{ep} \sim 10^{-5}$, is required!

(equivalently, observed radio is too dim for reasonable e/p ratio.)

Problem: low- energy cutoff of TeV- γ

Escape- limited acceleration?

- Age-limited model (t_{acc}=t_{age}) で決まる E_{max}以下の被加速粒子 に対しても、加速領域外へエスケープしてしまう効果が大きく なると、E_{max}は小さくなってしまう。詳しくは以下参照: Ohira, Murase, RY (2010), submitted to A&A (arXiv:0910.3449)
- このEscape-limited model のシナリオでは、RX J1713.7-3946の
 ガンマ線スペクトルが100TeV以上まで伸びていないことは説明可。
- そのかわり、「Young SNR がGalactic CRsの源」であるためには、 「昔(age~100yrs) knee まで加速していた」とすることになる (Gabici, Aharonian 08)。
- ・これをどうやって観測的に検証するのか?
- Cas A(age=340yrs) はkneeまで届いている兆候なし。
 Youngest SNR (G1.9-0.3)はCTAをもって観測するのは難しい
 ようなので(Ksenofontov+08)、新たな若いSNRを探し出す必要ある?
 => TeV un ID sourceの中にないか?もしくはCTAで発見されるか?

Gamma- rays from old SNRs

"分子雲と相互作用する" Middle age, old SNRsからGeV帯域 ガンマ線を検出(IC443,W51C, W44, W28)。 スペクトルに折れ曲がりが存在(W51,W44)? 分子雲は単に宇宙線ターゲットだけではなく、宇宙線解放の場?

GeV- TeV Morphology

GeV- TeV Morphology

$D_E \propto E^{\alpha}$ (α : unknown)

SNRの年齢が時刻 $t = t_{age} - t_0$ にCRのISMへの解放が おこったことがわかると同時に、CRの伝播の様子が 詳細に明らかになる?

TeV unIDs are old SNRs or PWNe?

TeV unIDソースの空間分布はこれまで議論されていない。 これはCTA時代の課題。以下の2天体は典型例。

Electron acc. at Cas A's reverse shock Surface brightness 1 peak profile 2 peaks profile 500 Helder & Vink (08) Uchiyama+, Helder & Vink, ... arcsec² 400 **Evidences for acceleration** per at reverse shock. 300 counts 200 100 Helder & Vink (08) ſ 100 150 0 50 200 1.33 1.67 >2.00 0.00 0.33 0.67 1.00 R [arcsec] 200 1200 200 200 1200 200 100 100 100 001 100 100 CECSEC 39234C orcsec n. -100 -100 -100 -100 -100 -100Radio Si keV - 200 200 -200 L 200E 200 -200 100 200 -200100 200 -200 -100100 200 -200-100-100BICSEC orcsec OFC-SEC.

Ellison et al. (2005)

Reverse shock のすぐ内側(上流) の磁場 B_0 は、Ejecta の磁場であり、 compact starの磁場がSNRの膨張 にともなって引き延ばされたもの。 (右図: B_{WD} =10¹¹G, 3x10¹⁰G) 従って、一般に、

B₀ << B_{ISM}~ a few µG. このような場合、reverse shockでの 加速は、synch. X-rayを出すほどで はない?

> B₀: shock上流の磁場 r_{tot}: shock圧縮比 p_{max}: for protons v_c: charac. synch. freq.

