AGIS Project (Advanced Gamma-ray Imaging System)

Hiro Tajima on behalf of AGIS collaboration SLAC National Accelerator Laboratory Kavli Institute for Particle Astrophysics and Cosmology

Outline

Project concepts

Science drivers

Technology development

Summary and Prospects

January 9, 2010 CTA Japan Workshop ICRR, Japan

- MeV region (Compton, photo absorption)
 - INTEGRAL, Swift? (not really MeV instrument)
 - * COMPTEL
 - State of art "ACT" in study, however, no clear future path
 - ✦ SGD (sub-MeV) onboard JAXA ASTRO-H to be launched in 2014
- GeV region (pair conversion)

EGRET, AGILE

- Fermi (GLAST)
 - ✦ ~ \$700M/mission, state of art instrumentation
 - Constraints on volume, mass and power
- TeV region (air shower)
 - * HESS, CANGAROO, MAGIC, VERITAS
 - ★ ~\$15M/site (2-4 telescopes)
 - Room for technology development
 - Milagro (large FOV, limited sensitivity)

- * HAWC
 - Larger active area and better background rejection by rearrangement of PMTs
 - Lessons learned from Milagro
 - Further increase of effective area is not easy
- Future IACT (Imaging Atmospheric Cherenkov Telescope)
 - * x~10 better sensitivity
 - CTA (European effort)
 - Majority of members from HESS/MAGIC + new members
 - Tends to be conservative on technology choices
 - ~150M€ (100/50M€ for southern/northern sites)
 - * AGIS (US effort)
 - Open to new technologies (optics, photon detectors, ASICs)
 - Submit joint R&D proposals to NSF/DOE
 - Aiming \$~200M level project
 - New technologies required to reduce cost

Origin of Comic rays

- High-energy cut-offs in cosmic-ray accelerators in the Milky Way
- Extragalactic sources?
 - ✦ AGN (Active galactic nuclei) and GRB (Gamma-ray burst)
 - Extragalactic background light
- Dark matter search
- Dark TeV sources
- Complementary to Fermi LAT (higher energy band)

INSTITUTIONS:

Adler ANL Barnard Delaware IAFE INAF (Brera) Iowa State

LANL McGill MSFC Penn State Pittsb. State Purdue SAO Stanford/SLAC UNAM UCLA UCSC U. Chicago U. Okicago U. lowa U. Utah Yale U. Washington U.

INSTITUTIONS:

Adler ANL Barnard Delaware IAFE INAF (Brera) Iowa State

LANL McGill MSFC Penn State Pittsb. State Purdue SAO Stanford/SLAC UNAM UCLA UCLA UCSC U. Chicago U. Ochicago U. Ochicago U. Utah Yale U. Washington U.

15 US University groups4 National Labs4 International groups

INSTITUTIONS:

Adler ANL Barnard Delaware IAFE INAF (Brera) Iowa State

McGill MSFC Penn State Pittsb. State Purdue

LANL

SAO Stanford/SLAC UNAM UCLA UCSC U. Chicago U. Chicago U. Othicago U. Utah Yale U. Washington U.

15 US University groups4 National Labs4 International groups

Executive Committee: J. Buckley S. Funk H. Krawzcynski F. Krennrich (SP) V. Vassiliev

IACT Technique

background rejection

IACT Technique

IACT Technique

geometry over-constrained

- Improve sensitivity by a factor of ~10 in 0.1–10 TeV
 - ♣ 4 telescope → 36 telescope array
 - **♦** Wide FOV (3–5° \rightarrow 8°), large telescope spacing
- ♦ High resolution imaging $(0.1^\circ \rightarrow 0.05^\circ)$
 - Sharper image
 - Better BG rejection
 - Better sensitivity
- 220 M\$ project (includes construction, operation for 10 years)
 - Large collaboration

 (> 20 institutes)
 supporting AGIS

Event containment:

✤ angular resolution x 3											
					S						
background rejection x 2	Photon										
	statistics!		X	2	2				S		Â
Collection area x 10										X	
			S				2		S		
* FOV x 4											
			S								
$S \propto \Theta \times \sqrt{back} \times \sqrt{area} \times \sqrt{S}$	2	1 C				\$.		<u> </u>	

Event containment only works for minimum size of array, so that combination of collection area and angular resolution are achieved!

Event containment:

Event containment only works for minimum size of array, so that combination of collection area and angular resolution are achieved!

Specification of the AGIS-36 Array	Target
Telescope Spacing	120 - 150 m
Effective Mirror Area per Tel.	100 m ²
Field of View (FOV)	8 deg
Pixelation	0.05 - 0.10 deg
Effective Collection Area	1 km ²
Energy Threshold	100 GeV
Angular Resolution	0.02 - 0.05 deg

Specification of the AGIS-36 Array	Target
Telescope Spacing	120 - 150 m
Effective Mirror Area per Tel.	100 m ²
Field of View (FOV)	8 deg
Pixelation	0.05 - 0.10 deg
Effective Collection Area	1 km ²
Energy Threshold	100 GeV
Angular Resolution	0.02 - 0.05 deg

Key attributes of AGIS

* AGIS Element:

Schwarzschild-Couder optics

- Secondary optics
- Short F/D
- Compact
- High resolution
- Wide FOV

AGIS Project CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

Pixelation

DC optics

FOV 3.5 deg. Actual Size

SC optics

* AGIS Element:

Schwarzschild-Couder optics

- Secondary optics
- Short F/D
- Compact
- High resolution
- Wide FOV

Pixelation

 $\begin{array}{c} \mathsf{FOV} \\ \bullet \end{array} \end{array} \longrightarrow \end{array}$

3.5 deg.

8 deg.

Science Drivers

- AGIS will provide precision measurements:
 - detect 200 300 SNRs (population studies)
 - image with arcmin resolution: radio X-ray TeV (hadrons?)
 - spectroscopy: 30 GeV 100 TeV (hadrons vs. leptons)
 - role of SNRs, X-ray binaries, PWNe & dark accelerators
 - resolve point sources from diffuse emission
 - discovery potential for dark matter self-annihilation

Sky survey: Angular Resolution, FoV, Sensitivity (5 mCrab in 1 year)

IC443

Physics: Supernova Shocks

CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

Physics: Supernova Shocks

Physics: Supernova Shocks

(>200 GeV) [10⁻⁹ cm⁻² s⁻¹]

Physics: Galaxies/AGNs

2008

IES¹1218+304

- ✤ AGIS will:
 - detect 100's of AGN
 - probe space time
 & intergal. medium
 - probe SMBH Jet connection
 e, p, n in relativistic jet
 always > 1 γ-ray AGN in FOV
 flux variability on ~ 1 sec.

VERITAS

27.5

27

26.5

Physics: Galaxies/AGNs

80

- detect 100's of AGN
- probe space time
 & intergal. medium
- probe SMBH Jet connection
 e, p, n in relativistic jet
 always > 1 γ-ray AGN in FOV
 flux variability on ~ 1 sec.

AGIS Project CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

Physics: Galaxies/AGNs

- detect 100's of AGN
- probe space time
 & intergal. medium
- probe SMBH Jet connection
 e, p, n in relativistic jet
 always > 1 γ-ray AGN in FOV
 flux variability on ~ 1 sec.

Physics: Galaxies/AGNs

probe SMBH - Jet connection
e, p, n in relativistic jet
always > 1 γ-ray AGN in FOV
flux variability on ~ 1 sec.

VERITAS: Acciari et al. 2009, ApJL, 684, L73

80

(>200 GeV) [10⁻⁹ cm⁻² s⁻¹]

Physics: Galaxies/AGNs

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

AGNs z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

AGNs z<5

Pop III z ~ 7 - 30

- Probe diffuse Cosmic IR-Background with 100s of sources
- EBL poorly understood: near mid IR
- ***** TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy

Formation

z<5

AGNs z<5

Pop III z ~ 7 - 30

- Detection of dark matter signal from Space is complementary
 - Accelerator production
 - Precise measurements of DM properties: mass, cross section
 - UED (KK) vs SUSY
 - Direct detection
 - Good sensitivity to dark matter
 - Measurement of local dark matter density

CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

- Discovery of TeV γ-rays from starburst galaxy M82
 Probing cosmic-rays from outside our galaxy
 Dark Matter component possible in SB-galaxies
 flux ~ 9 mCrab, at the limit of VERITAS, HESS (139 hour exposure)
- VERITAS/Fermi are pathfinders for AGIS:
 sensitivity < 1 mCrab
 probe angular extent

VERITAS: Acciari et al. 2009, submitted to Nature

Two mirror optics

- Wide FOV ~8°
 - Better survey capability and larger collection area
- ✤ Reduced plate scale: ~30 cm/deg → ~3 cm/deg
- Shorter focus arms: fast slew (or less cost)
- Large number (~50) of telescopes and camera
 - Reliability of components
 - Modular design: easy to replace and maintain
 - Low power
 - Cost reduction
 - Currently \$~1M each for telescope and camera
 - Optimization of mirror size, FOV, # of telescopes
 - Depends on component cost
 - More efficient trigger to reduce dead time

Two-mirror system required for wide FOV and/or small plate scale

Low cost design for telescope structure

(V. Guarino, ANL)

(J. Buckley, WashU)

- Modular camera design
 - Divided into subfields

Logical unit for trigger generation, easy maintenance

AGIS Project CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

Requirements

Cost reduction

- ♦ large # of pixels: $2-4k \rightarrow 500k$
 - More telescope, wider FOV, smaller pixels
- Current cost: \$1,500 per channel with PMT
- Target cost: \$15 per channel with multi-anode PMT

Reliability

Development of custom waveform sampling ASIC, TARGET

- ✤ 4098 samples / channel (4 µs look-back time)
- 9 bit dynamic range
- ✤ 16 µs readout time (dead time less option)
- Estimated cost: ~\$10 per channel
 - + 16 channel per ASIC
 - Partial ADC implemented in ASIC
- 2nd generation in planning
 - ♦ 16 μ s look-back, shorter dead time (~5 μ s)

- Cherenkov camera with large # of pixel
 - Wide FOV (field-of-view)
 - Better angular resolution
 - ✤ 0.5~1k ch/camera ⇒ ~10k (x ~100 telescopes)
 - Target cost: \$15/channel (VERITAS: \$1500/channel)
 - ***** Other requirements:
 - ✦ Fast timing: ~ ns
 - ✦ Readout time: less than 50 µs (trigger rate < 3-5 kHz)</p>
- Low cost, high Q.E. photon detector
- Low cost, low power multi-ch readout ASIC

- AGIS aims to achieve x10 better sensitivities than current instruments by
 - Larger collection area (wide FOV, large telescope spacing)
 - Better angular resolution
- Technology development
 - SC optics
 - More reliable, less expensive camera electronics
 - Array trigger
- Prospects
 - * AIGS received favorable review by PASAG (DOE/NSF)
 - Recommendation for funding for most funding options
 - Under assumption of merger with CTA
 - Under review by Decadal Survey
 - Results in September

backup slides

- Strong gamma-ray community from Fermi-LAT
- Could play role of a lead national lab in AGIS
 - VERITAS (current US IACT) consists of mostly universities
 - Can benefit from strong involvement of national laboratory to carry out much larger project (if DOE funds AGIS)
 - Collaborative efforts with ANL
- Scope of SLAC involvement
 - Development of AGIS camera electronics
 - Development of DAQ
 - Could be challenging if no level-3 trigger
 - Optimization of array configuration via simulation studies
- Status of project
 - Currently under review by PASAG and Astro2010
 - At that time it could be endorsed by NSF + DOE
 - Aiming to start operation before Fermi LAT cease to operate

	Satellite based pair conversion	Air shower array	Air Cherenkov telescope
Experiments	EGRET, GLAST	Milagro, HAWC	HESS, VERITAS CANGAROO, MAGIC
Energy range	0.02 – 200 GeV	1 – 100 TeV	0.1 – 100 TeV
Angular res.	0.04 – 10 deg	~0.5 deg	~0.1 deg
Collection area	1 m ²	10 ³ – 10 ⁴ m ²	10 ⁵ m ²
Field of view	2.4 sr	2 sr	10 ⁻² sr
Duty cycle	~95%	>90%	<10%

AGIS Project CTA Japan Workshop, JAN 9, 2010, ICRR. Japan

- Camera electronics consists of
 - Camera modules: ~200/camera (~13k pixels)
 - Waveform sampling and digitization, 16 triggers
 - Subfield boards: ~10/camera (~36 modules/field)
 - Cross-link trigger information
 - Subfield trigger
 - * Main board

Board configuration

- Adapter board
- ASIC board
- FPGA board: FPGA, data link connector
- Power supply board: DC/DC converter, HV supply

