修士学位論文

次世代超高エネルギーガンマ線天文台CTA計画に おける大口径望遠鏡の分割鏡の集光性能評価の研究 2013年度 (平成25年度)

茨城大学大学院理工学研究科 理学専攻

> 12NM163A 馬場 浩則

本研究では Cherenkov Telescope Array (CTA) 計画における大口径望遠鏡の分割鏡の集光 性能評価の研究として、従来の評価方法である 2f 法に加え、大量生産に向けた新しい評価方 法である Phase Measuring Deflectometry (PMD) 法の開発を行い、それぞれの方法で分割鏡 の評価を行った。

CTA 計画とは、大中小3 種類の口径の大気解像型チェレンコフ望遠鏡による大規模望遠 鏡群により、20 GeV から 100 TeV 以上の広いエネルギー範囲でのガンマ線観測を行う次世 代国際共同実験である。この実験において CTA-Japan グループは大口径望遠鏡である Large Size Telescope(LST) に重点を置いて開発を行っている。LST の主鏡には放物面型複合鏡が 採用され、複数の分割球面鏡を組み合わせて一枚の大型放物面鏡として使用する。この分割 鏡は対辺間 1.51 m の六角形状球面鏡であり、1 台の LST あたり約 200 枚必要となる。また、 CTA 計画では北と南の 2 か所のサイトに大規模望遠鏡群を建設する予定であり、LST で 1 つ の観測対象を複数の望遠鏡でステレオ観測するために各サイトに4 台ずつ建設する。このた め、分割鏡を合計で 1600 枚以上生産する必要があり、さらにそれぞれの分割鏡の集光性能 には焦点距離 (1f) に集まる光の 80%を直径 16.6 mm 以内に収めなければならないという要 求値 (D80 < 16.5 mm) がある。これのことから、CTA 計画ではこの分割鏡の大量生産に対 する高精度かつ効率の良い評価方法が必要となり、従来の球面鏡の評価方法として知られて いる 2f 法という評価方法とともに、新しく PMD 法という評価方法を採用している。

2f 法とは 2f(曲率半径=約 56 m)の位置に光源と検出器を置き、鏡のスポット像を直接光で 捉えて評価する方法である。この装置を鏡の製造を依頼している三光精衡所に設置し、測定 を行った。この装置では検出器にスクリーンとデジタル一眼レフカメラを使用するため、測 定結果としてスポットの画像が得られる。この画像を解析することによって、LST 用分割鏡 の集光性能要求である D80 が 2f の位置で 33.2 mm 以下となっているかを評価する。評価方 法として、バックグラウンド処理を行った RAW 画像を使い、スポット光量の重心を求めて そこから放射方向に足し合わせていき、総光量を求め、D80 となる直径を求めるという方法 で評価を行った。その結果、分割鏡に対し D80 は 18.08±0.77 mm となった。

一方で、PMD 法とはドイツのエアランゲン大学で開発された3次元形状測定方法で、液晶 スクリーンを使って測定対象の鏡面に位相模様を映し、正反射によって生じた像の鏡面形状 による変形を4台の CCD カメラでステレオ撮影した画像を解析することにより、鏡面形状、 法線を測定する方法である。この方法によって得られた鏡面情報から光線追跡シミュレーショ ンを行い、スポットサイズや焦点距離の評価を行う。この方法は測定範囲が複数のカメラ視 野の重ね合わせとスクリーンの大きさを調整することで、大型鏡でも測定が可能になる。ま た、測定作業は特定の位置に鏡を置き、写真を取るだけという単純なものであるため、測定 の効率化も狙える。本研究ではPMD 法装置を設計し、実際に宇宙線研究所内にて製作して 設置し、測定に必要な装置較正および鏡の測定、解析、装置の改善を行った。その結果、現 時点の PMD 装置は鏡面において 10 μm 程度の構造が測定できた。そして複数の鏡の測定し た結果、要求値の半分の大きさまでのスポットサイズの判別ができ、それぞれの鏡が要求を 満たしているかの判断が可能となった。

2f 法と PMD 法の測定結果の比較を行ったところ、PMD 法の方が曲率半径が長くなり、また、その傾向はスポットサイズが大きいほど顕著となった。このことについて、PMD 法のシステマチックエラーではなく、それぞれの測定の曲率半径決定の基準と鏡のある固有の形

状に原因があると考え、PMD 法の結果に Constant diameter(Cd) という新しいパラメータ を導入し、スポットの解析を行った。Constant Diameter(Cd) とはある鏡からの距離でのス ポットに対し、その総光量の重心からある直径の円の内側に入る光量を調べる。そして円に 入る光量が最も多くなる鏡からの距離をその鏡の焦点距離 (曲率半径) とする解析方法であ る。結果、Cd33(diameter=33 mm) で評価を行うとスポットサイズが大きいものほど曲率半 径が離れるという傾向が弱くなり、また、Cd16.5(diameter=16.5 mm) で評価を行うと 2f 法 の結果とほぼ近くなった。また、鏡のある固有の形状として中心と端で異なった曲率半径を 持つ鏡面モデルを作成し、Cd33 による評価のシミュレーションを行った結果、実測の結果 とよく似た結果が得られた。これらのことから、PMD 法と 2f 法の比較によって得られた誤 差は、PMD 法のシステマチックエラーではなく、それぞれの測定の曲率半径決定の基準と 中心と端で異なった曲率半径を持つ鏡の形状によるものと分かった。 目 次

第1章	Introduction	7
1.1	高エネルギーガンマ線天文学	7
1.2	ガンマ線の地上観測	7
	1.2.1 ガンマ線からのチェレンコフ光	7
	1.2.2 大気解像型チェレンコフ望遠鏡の概要	10
第2章	Cherenkov Telescope Array (CTA) 計画	13
2.1	Cherenkov Telescope Array (CTA) 計画	13
2.2	CTA で狙うサイエンス................................	14
2.3	CTA の観測装置	14
2.4	Large Size Telescope(LST)	16
	2.4.1 LST の光学機器開発	16
	2.4.2 光検出器周辺の開発	18
第3章	LST 用 1.5m 分割球面鏡の評価法の開発	19
3.1	LST 用 1.51m 分割球面鏡	19
	3.1.1 LST 用 1.51m 分割球面鏡の仕様	19
3.2	2f法	22
	3.2.1 2f 法概要	22
	3.2.2 写真撮影による測定	23
	3.2.3 撮影画像の解析	24
	3.2.4 測定結果	26
	3.2.5 解析の安定性	29
3.3	Phase Measuring Deflectometry (PMD) 法概要	30
	3.3.1 Phase Measuring Deflectometry (PMD)法	30
	3.3.2 測定原理	30
	3.3.3 装置製作	35
	3.3.4 キャリブレーション	38
	3.3.5 測定	42
	3.3.6 装置の改善と再測定結果	45
	3.3.7 装置の時間変化	48
	3.3.8 2f 法との比較	49
3.4	新しい評価基準「Constant diameter(Cd)」の検討	52
	3.4.1 Constant diameter の概要	52
	3.4.2 Cd33 による評価結果	52
	3.4.3 Cd33のによる鏡面評価	55

第4章	まとめと今後	60
付録A	反射率位置依存性測定	62
付録B	PMD 装置の使い方	64
付録C	解析プログラムのソースコード	71

図目次

1.1	宇宙線 (水色) とガンマ線 (黄色) の地球到来イメージ				•	•		•	7
1.2	電磁カスケードシャワー (左) とハドロンシャワー (右) の模式図					•			8
1.3	電子陽電子対消滅模式図					•			8
1.4	制動放射模式図								8
1.5	π^0 中間子の崩壊模式図								9
1.6	チェレンコフ光の放射原理								9
1.7	高エネルギーガンマ線からのチェレンコフ光模式図.......								10
1.8	シミュレーションによる電磁カスケードシャワー (左) とハドロンシャ	, Г	7-	- (右).			11
1.9	単一望遠鏡による観測 (左) とステレオ法を用いた観測 (右) のイメー:	ジ							12
2.1	CTA の想像図。		•	•	•	•	•	•	13
2.2	観測エネルギー範囲における各望遠鏡の目標感度曲線		•	•	•	•		•	13
2.3	X 線、ガンマ線、超高エネルギーガンマ線の観測数の期待される時間	変	ÉŔŁ	Ĺ	•	•		•	14
2.4	モンテカルロシミュレーションによって最適化されたアレイ		•		•	•		•	15
2.5	LSTのCGイメージ		•		•	•			16
2.6	分割鏡設置部分の構造				•				17
2.7	試作されたライトガイド					•			17
2.8	集光面とクラスターの構造				•				18
2.9	浜松ホトニクスで作られた実際の PMT				•				18
0.1									10
3.1	LST 用 1.51m 分割鏡	·	•	·	•	•	•	•	19
3.2	コールドスランブ法	•	•	•	•	•	•	•	20
3.3	分割鏡のハニカム構造	•	•	•	•	•	•	•	20
3.4	三光精衡所にあるスパッタリング装置とその模式図.......	•	•	•	•	•		•	20
3.5	平行光に対する球面鏡の反射の図		•	•	•	•	•	•	22
3.6	2f 法		•	•	•	•		•	22
3.7	スクリーン (左) と 58 m 先に置かれた分割鏡の見え方 (右)		•	•	•	•		•	23
3.8	ベイヤー配列の青色のみを抽出....................		•		•	•		•	25
3.9	スポットのイメージ (青の部分) に対する D80 算出方法の模式図		•		•	•		•	26
3.10) シャッタースピード 1/5 s				•			•	26
3.11	l シャッタースピード1s				•	•			27
3.12	2 シャッタースピード 3.2 s				•				27
3.13	3 微小シェルごとの光量 (縦軸) と半径 (横軸) の関係								28
3.14	4 バックグラウンド最適化係数の変化と D80 関係 (右:拡大図)								29
3.15	5 PMD 法による鏡の評価模式図								30
3.16	$3 I_n$ とその成分								31
3.17	7 求めた位相から対象の座標を求める								31

3.18	特別な条件におけるステレオ写真測量			32
3.19	一般的な条件におけるステレオ写真測量			33
3.20	非反射体 (左) と反射体 (右) に対して点光源と投影素子による位相模様投影.			34
3.21	スクリーンにより位相模様を投影した場合			34
3.22	ステレオカメラのよる点 s の決定			34
3.23	表面形状の決定................................			35
3.24	pixelを sin 波でフィット			35
3.25	- MST 分割鏡用 PMD 装置			36
3.26	3D-CAD による P M D 装置の完成予想図			36
3.27	3D-CAD による P M D 装置の設計図			37
3.28	モデルにおけるスクリーンの虚像を用いたの視野確認			37
3.29	完成した PMD 装置			38
3.30	各 CCD カメラの視野			38
3.31	サイデルの5収差			39
3.32	実際にテストボードを撮影した画像			39
3.33	スクリーンキャリブレーションイメージ (右) と実際撮影した画像 (左)			40
3.34	スクリーンキャリブレーションにより検出したスクリーンの歪み			41
3.35	原点、カメラ座標と回転の初期値決定			41
3.36	ワールド座標キャリブレーションにおける鏡の設置バリエーション・・・・			42
3.37	測定結果			43
3.38	エアランゲン大学による解析結果			44
3.39	鏡を回転させて測定した結果			44
3.40	スクリーンの角度の変更			45
3.41	スクリーンキャリブレーションにより検出したスクリーンの歪みの時間変化			46
3.42	再キャリブレーション後の測定結果			46
3.43	No.7の測定結果			47
3.44	No.9の測定結果			47
3.45	各カメラにおける基準点の位置			48
3.46	スポットサイズ (左) と曲率半径 (右)			49
3.47	曲率半径における PMD 法と 2f 法の比較			49
3.48	1 枚で異なった焦点を持つ鏡のスポットサイズ (No.5)			50
3.49	Cd33のイメージ			52
3.50	No.5 の分割鏡に対する Cd33 計算結果			52
3.51	曲率半径 10 cm ごとの Cd33 計算結果プロット			53
3.52	D80 にによる曲率半径 (左) と Cd33 による曲率半径について (右)			54
3.53	Cd33(左)とCd16.5(右)の比較			54
3.54	Cd33 を反映した No.5 の鏡面			55
3.55	内側 (黄色) と外側 (緑) で曲率半径が異なる鏡面モデル			56
3.56	鏡面モデル A の結果 (スポットと表面形状)			57
3.57	鏡面モデル A の結果 (曲率半径に対する Cd33)			57
3.58	鏡面モデル B の結果 (スポットと表面形状)			58
3.59	鏡面モデル B の結果 (曲率半径に対する Cd33)			58
3.60	全て鏡に対する Cd33	•		59

A.1	分割鏡面の反射率測定位置	•	•					•	62
A.2	各分割鏡の測定位置ごとの反射率とその平均のばらつき							•	62
A.3	No.6 における波長ごとの反射率の位置依存性								63

表目次

2.1	それぞれの望遠鏡の特徴..................................	15
3.1	2f 法使用機材とその設定	23
3.2	シャッタースピード1sのスポット画像の解析結果	28
3.3	各カメラにおける基準点の時間変化 (pixel)	48
3.4	LST 用分割鏡測定結果	51

第1章 Introduction

1.1 高エネルギーガンマ線天文学

宇宙線の加速源問題は1911 に Victor Franz Hess によって宇宙線が発見されてから現代に いたるまで、未だ未解決の重要な問題の1つである。これまでの観測から、宇宙線はべき型の エネルギースペクトルを持ち、超高エネルギーの宇宙線も存在すると考えられている。しか しその宇宙線がエネルギーを受け取る加速源及び加速機構の解明はなされていない。宇宙線 は宇宙空間を通過して地球に到来する際、宇宙空間における広範囲で不規則な磁場によって 進行方向を曲げられてしまう。そのため宇宙線観測ではその発生源方向の観測が困難となっ ている。しかし、宇宙線を発生、加速しうるような高エネルギー天体では、高エネルギーガ ンマ線が放射される。高エネルギーガンマ線は透過力が高く、その進行方向をほとんど曲げ られることなく地球に到来する。つまりこの高エネルギーガンマ線を観測することによって 宇宙線加速源の特定、そしてその加速機構の解明が可能となる (図1.1)。また、高エネルギー ガンマ線の観測は宇宙に満ちている高エネルギー現象を明らかにすることが出来る有力な手 段の一つである。

図 1.1: 宇宙線 (水色) とガンマ線 (黄色) の地球到来イメージ [1]

1.2 ガンマ線の地上観測

1.2.1 ガンマ線からのチェレンコフ光

地球に到来する高エネルギーガンマ線は地球大気の原子核との相互作用によって電磁カス ケードシャワーを発生させる。到来する高エネルギーガンマ線 (1次粒子) は大気と相互作用 により電子陽電子対生成を起こし、電子・陽電子 (2次粒子) を発生させ、さらにそれらが大 気の原子核エネルギーによって制動放射を起こしガンマ線を発生させる。この反応はガンマ 線のエネルギーが電子・陽電子対生成が優位であるエネルギー (地球大気に対し、約83MeV) 以下になるまで繰り返され、雪崩的に粒子が生成される。これを電磁カスケードシャワーと いう。また、到来する最初の粒子が陽子であり、大気中の原子核とのπ⁰ 中間子の崩壊から 発達していくものをハドロンシャワーといい、これらを総して空気シャワーという (図 1.2)。 空気シャワーの最大発達高度は1次粒子のエネルギーに依存し、高エネルギー粒子ほど低高 度となる。以下にこれら空気シャワーの模式図とそれぞれの大気原子核との相互作用の概要 を示す。

図 1.2: 電磁カスケードシャワー (左) とハドロンシャワー (右)の模式図

• 電子陽電子対生成·対消滅

高エネルギーガンマ線が原子核と衝突すると、電子と陽電子の対を生成する (対生成)。 これに対し、電子、陽電子が衝突すると消滅して、運動量保存の法則から、ラインス ペクトルのガンマ線を2つ生成する (式 (1.1))(図 1.3)。

(1.1)

図 1.3: 電子陽電子対消滅模式図

• 制動放射

制動放射とは高エネルギー電子が電子、イオン、原子核のクーロン場で加速を受けた時 に光子を放射する放射機構である (図 1.4)。放射される光子のスペクトルは、ほぼ 1 /*E* に比例して、高エネルギー側に向かって減少していく連続スペクトルとなる。

図 1.4: 制動放射模式図 [2]

π⁰ 中間子の崩壊

高エネルギーの陽子が原子核に衝突すると、式 (1.2) のような反応が起き、π⁰ 中間子を 発生させる。

$$p + p \to p + p + a\pi^0 + b\pi^{\pm}, \quad \to p + n + \pi^+ + a\pi^0 + b\pi^{\pm}$$
 (1.2)

 $p: 陽子、n: 中性子、\pi: \pi_0, \pi_{\pm}$ 中間子、a, b: 1,2,3...の整数、となっている (p+(He 原子核)の場合もありうる)。このうち π^0 中間子は寿命 8.4 × 10⁻¹⁷ s で 2 つのガンマ線 に崩壊する (図 1.5)。

図 1.5: π⁰ 中間子の崩壊模式図

π⁰中間子が静止している場合、エネルギーが67.5 MeV(π⁰の静止エネルギーの約半分) のガンマ線が互いに正反対の方向に放射される。

高エネルギーガンマ線はこの空気シャワーによって、直接地上で観測することが出来ない。 しかし空気シャワー中の荷電粒子はその速度が空気中の光速を超えることによって、チェレ ンコフ光という光を放射する (図 1.6)。

図 1.6: チェレンコフ光の放射原理

この光の波長分布は波長の2乗に反比例し、短波長ほど多く放射されるが、地上に届くまで にオゾンによる吸収やレイリー散乱、ミー散乱により減衰を受け、地上では300 nm~500 nm に分布した光となる。また、チェレンコフ光は空気シャワー内の粒子の運動方向に対し以下 の式のような放出角度で放射される。

$$\theta_c = \arccos(\frac{v}{nc}) \tag{1.3}$$

nは大気の屈折率、cは光速、vは粒子の速度である。

空気シャワーからの総チェレンコフ光の形状はシャワー内の粒子分布に*θ*_cを畳み込んだもの(各粒子におけるチェレンコフ光のリングの重ね合わせ)となる。またチェレンコフ光の総 光子数は元のガンマ線のエネルギーに比例し、空気シャワーからのチェレンコフ光の地上で の広がりは、シャワーの最大発達高度での*θ*_cに対応する円の内側でほぼ一様な光の円盤(ラ イトプール)を作る。ただし、この光の円盤には空気シャワーの発達時間による時間的厚み は存在する(図 1.7)。

図 1.7: 高エネルギーガンマ線からのチェレンコフ光模式図 [8]

これらのことから、地上でチェレンコフ光を捉え、空気シャワーイメージと光子数密度を 観測することで、高エネルギーガンマ線を地上で間接的に観測することが可能である。

1.2.2 大気解像型チェレンコフ望遠鏡の概要

地上で空気シャワーからのチェレンコフ光の検出し、間接的に高エネルギーガンマ線を観 測する仕組みの望遠鏡を大気チェレンコフ望遠鏡という。この望遠鏡は球面鏡や放物面鏡な どの反射鏡を用いて空気シャワーから放射されるチェレンコフ光を集め、集光面に設置した カメラでその楕円形状を結像し、光子数 (数密度)を観測する。測定するガンマ線のエネル ギーは光子数密度により決定するため、エネルギー閾値はほぼ反射鏡面の面積に反比例し、 1 TeV のガンマ線では数平方メートル程度が必要となる。また、チェレンコフ光は微弱な光 のため、晴れた月明かりのない夜間以外での測定は困難である。そして人工光や大気光、光 道光、星野光などの夜光がバックグラウンドとなる。チェレンコフ光の伝播速度はほぼ光速 で、空気シャワー内の粒子もほぼ光速で進むため、空気シャワーのチェレンコフ光のライト プールの時間的厚みは数 ns である。このため検出器の積分時間を数 ns まで短くすれば、夜 行のバックグラウンドを低減させることが出来る。

イメージング法

セクション1.2.1 で述べたように、ガンマ線以外に陽子などの宇宙線からも空気シャワー (ハドロンシャワー)が作られる。このシャワー内の粒子からもチェレンコフ光が放射される ため、ガンマ線を捉えるにはこの宇宙線バックグラウンドから信号を判別する必要がある。 ガンマ線の空気シャワーとハドロンシャワーとではその発達が異なるため、シャワーの形状 が異なる。ガンマ線の空気シャワーの発達は電子陽電子対生成、制動放射(電磁相互作用)に より発生する2次粒子が持つ1次粒子の進行方向に垂直な運動量がπ⁰崩壊過程(核相互作用) などから発生するハドロンシャワーのものよりも小さいため、比較的コンパクトなシャワー 形状となる。また、ハドロンシャワーは核相互作用によって放出される粒子数やエネルギー にふらつきが大きいため、比較的不規則に発達する(図 1.8)。

図 1.8: シミュレーションによる電磁カスケードシャワー (左) とハドロンシャワー (右)[5]

このようなシャワーの形状の違いはそこから放射されるチェレンコフ光によるシャワーの像 にも違いを及ぼす。また、望遠鏡の光軸を点状のガンマ線源に合わせた場合、そのガンマ線源 から発生するガンマ線による空気シャワーの像はカメラの中心に円で映るか、もしくは中心 からずれた位置で長軸が光軸と直交するような楕円形状となる。しかし宇宙線の場合は様々 な方向から到来するため、楕円像の長軸方向はばらばらとなる。

これらの像の違いによって宇宙線バックグラウンドを識別する方法をイメージング法という。このようなイメージング法を用いた大気チェレンコフ望遠鏡を特に大気解像型チェレン コフ望遠鏡といい、この望遠鏡はこのイメージング法に十分な結像性能が必要となる。

ステレオ観測

空気シャワーは地球大気で起こり、シャワー軸から離れた位置でチェレンコフ光を捉える とガンマ線発生源と空気シャワーの間で視差が生じる。そのため地上でとらえられる空気シャ ワーの像は発生源方向からややずれた位置でその楕円の長軸方向が発生源方向を向くことに なる。1つのガンマ線イベントに対し、複数の望遠鏡で測定し、それぞれのシャワー像を重 ねることによって発生源方向を絞り込むことが出来る(図1.9)。この方法をステレオ法とい う。ステレオ法は最低2台の望遠鏡で行うことが出来るが、3台以上の複数で行えば、交点 決定に自由度が入り、最適化が可能となるため、台数が増えるほど決定精度は向上する。ま た、ステレオ法は望遠鏡間の距離を用いることで空気シャワーの発生高度が推定できるため、 この情報によりガンマ線のエネルギー決定精度も向上させることが可能となる。モンテカル ロシミュレーションや実測から、ガンマ線の信号は天体方向とシャワーイメージ像の長軸の

図 1.9: 単一望遠鏡による観測 (左) とステレオ法を用いた観測 (右) のイメージ

交点との角距離はその二乗が0にピークを持つような分布となる。この天体方向とシャワー 像との間の角距離の違いから宇宙線バックグラウンドとの識別にも有効に働く。

第2章 Cherenkov Telescope Array (CTA) 計画

2.1 Cherenkov Telescope Array (CTA) 計画

図 2.1: CTA の想像図。

Cherenkov Telescope Array (CTA) 計画とは、南半球と北半球に設置した大規模な大気解 像型チェレンコフ望遠鏡群により、超高エネルギーガンマ線の地上観測を行う次世代の国際 共同実験である (図 2.1)。CTA 計画は、広い面積をアレイ状に配置した望遠鏡で覆い、1 つの 空気シャワーを多くの望遠鏡でステレオ観測することにより、現在稼働中である、H.E.S.S.、 MAGIC、VERITAS といった同原理の望遠鏡よりも感度を一桁向上させる (1 mCrab~10⁻¹⁴ erg s⁻¹cm⁻²: 1 Crab は、かに星雲のガンマ線強度)。また、アレイを3種類の異なった口径 の望遠鏡の組み合わせによって構成することにより、観測可能なエネルギー領域を数十 GeV ~100 TeV 以上のおよそ4 ケタまで広げることを実現する (図 2.2)。

高エネルギーガンマ線源はこれまでの望遠鏡により 100 以上観測されてきた。そして、この CTA よってその観測されるガンマ線源の数は 1000 を超えると予想される (図 2.3)。CTA の実現は高エネルギー天文学を飛躍的に発展させると期待できる。

図 2.2: 観測エネルギー範囲における CTA(赤)、MAGIC(青)、H.E.S.S.(緑)の目標感度曲線 [9]。

図 2.3: X線、ガンマ線、超高エネルギーガンマ線の観測数の期待される時間変化 [9]。

2.2 CTA で狙うサイエンス

CTA ではその広いエネルギー範囲と高い感度により、多くのサイエンスに貢献できる。 銀河系内天体の一例としての超新星残骸を例に挙げる。超新星残骸とはその名の通り超新 星爆発後に残る構造のことである。この衝撃波面で宇宙線の衝撃波加速が起こるとされ、銀 河系内での起こりうる 10¹⁵ eV 以下 (宇宙線スペクトルの knee と呼ばれる折れ曲がりまで)の 宇宙線加速の最有力候補とされている。しかし、現時点で観測されたエネルギースペクトル からでは宇宙線加速が 10¹⁴ eV 程度までしか再現できてておらず、また、そのエネルギースペ クトルは年齢とともに時間変化していると考えられている。CTA では一桁高い感度により、 現状の観測範囲で届いていない銀河中心 (8 kpc) をさらに超えた遠方まで観測範囲を広げら れるため、より多く数の超新星残骸を観測することが可能となる。その結果、10¹⁵ eV まで の宇宙線加速源天体の同定、さらにエネルギースペクトルの時間変動の解明が期待できる。

銀河系外の宇宙線加速源候補の一つとして活動銀河核がある。活動銀河は中心に巨大ブ ラックホール (supermassive black hole) を持つ銀河であり、その中心核が活動銀河核である。 活動銀河核には中心から光速に近い粒子やプラズマを吹き出す相対論的なジェットを持つも のがあり、中でもそのジェットが観測者方向に向いているものをブレーザーという。このブ レーザーは銀河系外のガンマ線源天体として、最も多く検出されている。相対論的なジェッ トによる宇宙線加速が考えられており、最高エネルギー宇宙線加速源の候補とされている。 CTA ではより遠方の銀河までその観測範囲を広げられるため、その観測結果からより詳細 な議論を可能とする。

2.3 CTA の観測装置

CTA では Large Size Telescope(LST)、Medium Size Telescope(MST)、Small Size Telescope(SST)の異なった3種類の口径の望遠鏡を複数台使用する。これらの望遠鏡で広い面積 をアレイ状の覆うことのよって、チェレンコフ光をアレイ内側で捉えることができ、データ の質が向上する。さらに、1つのガンマ線イベントに対し再構成に参加する望遠鏡の台数を 増加させることができ、宇宙線との分離度、角度分解能、エネルギー分解能も向上する。ま た、3 種類のうち、大口径望遠鏡である LST の集光面積を従来の望遠鏡よりも広くすること によって低エネルギーのガンマ線からの光子の統計が向上し、エネルギー閾値を下げること が可能となる。これらにより、達成目標である数十 GeV~100 TeV 以上の広いエネルギー範 囲でこれまでより一桁高い感度の観測を実現する。以下の表 2.1 にそれぞれの望遠鏡の詳細 をまとめる。

	LST	MST	SST
口径	23 m	$10\sim 12 \text{ m}$	4.3 m
観測エネルギー範囲	数 10 GeV - 1 TeV	$100~{\rm GeV}$ - $10~{\rm TeV}$	$1~{\rm TeV}$ - $100~{\rm TeV}$
反射面形状	Parabolic	Davies-Cotton	Davies-Cotton
		or Schwarzschild-Couder	or Schwarzschild-Couder
鏡面積	400 m^2	100 m^2	$37 \mathrm{\ m^2}$
焦点距離	28 m	$15 \mathrm{~m}$	$7 \mathrm{m}$
視野	4.5°	6°- 8°	$\sim 10^{\circ}$

表 2.1: それぞれの望遠鏡の特徴

この3種類の望遠鏡を複数台組み合わせてアレイを構成する。それぞれの望遠鏡の配置は モンテカルロシミュレーションによって最適化を行っている。シミュレーションでは各望遠 鏡の性能(口径、視野、解像度など)とアレイ配置の関数から装置全体の性能(感度、角度分 解能、エネルギー分解能、バックグラウンド除去能力)が調べられる。実際のシミュレーショ ンにより算出した、最適な配置を図2.4 に示す。

図 2.4: モンテカルロシミュレーションによって最適化されたアレイ。図中の SCT は Schwarzschild-Couder Telescope(MST) を表す。

2.4 Large Size Telescope(LST)

CTA における 3 種類の望遠鏡のうち、日本グループは主に Large Size Telescope(LST)の 開発に重点を置いている。LST はカーボンファイバーチューブによるスペースフレーム構造 の土台に放物面型複合鏡の主鏡と光電子増倍管 (Photomultiplier Tube; PMT) で構成される 集光面を取り付けた構造となっている (図 2.5)。チェレンコフ光の光子数はその元となるガ ンマ線のエネルギーに比例する。そのため、数十 GeV~1 TeV の低エネルギーガンマ線から の光子を十分数捉えるには、それに合った広い面積の口径が必要となる。LST の口径 23 m で面積 400 m² となっており、これは MAGIC の望遠鏡の面積 (240 m²) の約 1.5 倍となって いる。

LST は低エネルギーガンマ線領域に対応した LST は銀河系外のガンマ線バーストの follow up 観測を行う。ガンマ線バーストの follow up 観測とはフェルミ衛星などでガンマ線バース トを捉えたとき、その情報を瞬時に CTA に送り、CTA の望遠鏡をフェルミ衛星で捉えた方 向に向け、CTA で観測を行うことである。このため情報を得てから素早く方向を変えること が必要となり、LST の鏡体は軽量かつ剛性の優れたカーボンファイバーチューブを採用して いる。LST 全体として総重量を 70 トン以下と抑えることで 20 秒で 180°回転を可能とする。

図 2.5: LST の CG イメージ

2.4.1 LST の光学機器開発

LST の主鏡は放物面型複合鏡であり、分割鏡を約 200 枚使用する。この分割鏡の開発は全 て日本グループが担当しており、茨城県つくばみらい市にある三光精衡所に製作を依頼して いる。現在 30 枚近くの実際に LST に搭載する分割鏡が生産された。この分割鏡の詳細につ いてはセクション 3.1.1 の「LST 用 1.51m 分割球面鏡の仕様」にて詳細を記す。

望遠鏡は自重や風圧、温度変化によって歪みが生じる。そのため、分割鏡とミラー支持構 造との間には分割鏡1枚当たりに1つのピポットと2つの高精度アクチュエーターが取り付 けられ、分割鏡自身にはレーザーが取り付けられる。取り付けたレーザーによって歪みを求 め、その歪みをアクチュエーターによって分割鏡の向きや形状を調整して補正する。このシ ステムは Active Mirror Control(AMC) と呼ばれており、実際に MAGIC ではすでに実用化 されている。CTA 計画においても Active Mirror Control は採用されており、開発が進めら れている。CTA では従来の AMC の方法に対し、主鏡の中心に1つのレーザーを設置し、分 割鏡それぞれに取り付けられたカメラで集光面のできるレーザーのスポットを捉え、向きや 形状を調整するという方法も検討されている。また、分割鏡をアクチュエーターで十分な調 整を行うためには、ミラー支持構造の変形を最小限に抑えなければならない。このミラー支 持構造はインターフェイスプレートと呼ばれ、十分な強度を維持して変形を抑えつつLST 全 体の重量の増加を抑えられるような構造の開発が進められている (図 2.6)。

図 2.6: 分割鏡設置部分の構造

LST の主鏡によって集光された光は集光面に並べられた PMT に入射する。しかし、PMT は筒状の構造をしており隣同士を接触して並べたとしても、PMT のないスペース (デットス ペース)が存在してまう。また、ただ PMT を並べただけでは、主鏡による反射以外の夜行や 地面からの照り返しなどのバックグラウンド光も捉えてしまう。この 2 つの問題に対応する ために、LST の集光面では PMT1 つ 1 つに対しその前方にライトガイドと呼ばれる光学部 品が取りつけられる。これは図 2.7 のような対辺間 5cm の六角形の入り口を持った形状をし ており、隙間なく敷き詰めることが可能であり、また、ある角度以上の光が入射した場合は その形状による正反射によって光が PMT まで届かなくなる。このライトガイドについては LST に最適な形状の開発が行われている。

図 2.7: 試作されたライトガイド

2.4.2 光検出器周辺の開発

LST の集光面は直径 2.25 m となっており、PMT が 1855 本設置される。この PMT にラ イトガイドを取り付けた 1 本が 1 pixel(直径 5cm)に対応し、主鏡で集光されたチェレンコ フ光を捉え、カメラの CCD 面のように空気シャワーを結像する。集光面では 7 つの PMT(7 pixels)を1セットのクラスターとし、クラスター内の PMT、プリアンプ、読み出し回路、電 源供給通信部分といった各部分の開発が進められている (図 2.8)。また、この集光面全体を 効率良く冷却するための冷却システムの開発も行われている。

図 2.8: 集光面とクラスターの構造

これら PMT は日本の浜松ホトニクスで生産されている (図 2.9)。

第3章 LST 用1.5m 分割球面鏡の評価法の 開発

3.1 LST 用 1.51m 分割球面鏡

3.1.1 LST 用 1.51m 分割球面鏡の仕様

LST で使われる分割鏡は対辺間は 1.51 m の六角形型球面鏡である (図 3.1)。AMC 用のレー ザーまたはカメラを取り付けるために六角形頂点の一つが削られている。現在、数枚の試作 鏡から実際に望遠鏡に搭載する分割鏡 29 枚 (No.1~No.29) までの生産が行われた。

図 3.1: LST 用 1.51m 分割鏡

製造

分割鏡の製造にはコールドスランプ法を採用している。コールドスランプ法とはアルミ ハニカムの両面をガラス板で挟んだサンドイッチ構造を接着剤で固定し、曲率のついたマス ターモールドで曲率を写し取りる方法である (図 3.2)。LST の分割鏡ではアルミハニカムと して昭和飛行機工業の厚さ 60 mm のアルミハニカム AL-1/2-5052-.002(セルサイズ 1/2 イン チ、使用アルミ箔厚 0.002 インチ) と厚さ 2.8 mm のガラスが使用されている (図 3.3)。これ らのサンドイッチ構造により、分割鏡の厚さは 65.6 mm となっている。

分割鏡の反射面コーティングは従来の蒸着法ではなく、スパッタリング法を用いて製作される。蒸着法とはアルミニウムや銀などを高温で熱し、その蒸気を対象の表面に付着させる 方法である。これに対しスパッタリング法は真空チェンバーにコーティングの材料となる金 属の薄膜をターゲットとして設置し、高電圧をかけて内部に充填された希ガスや窒素ガズを イオン化され、ターゲットに衝突させる。この衝突によって金属ターゲット表面の原子が弾 き飛ばされ、コーティング対象の表面に成膜する。スパッタリング法によるコーティングは

図 3.2: コールドスランプ法 [16]

図 3.3: 分割鏡のハニカム構造

蒸着法のものよりも剥がれにくく、また、多層膜を形成することも可能であるため、光の干 渉効果によって反射率の向上も期待できる。実際にLST 分割鏡で採用となったのは、Cr 層、 Al 層、SiO₂ 層、HfO₂ 層、SiO₂ 層の5層膜コーティングである。スパッタリング法にはコー ティング対象の大きさにあった真空チェンバーなどの装置が必要となり、このスパッタリン グ技術はいくつかの場所で行われているが、LST 用分割鏡のような 1.51m の大型ものでも コーティングが可能なのは三光精衡所だけである (図 3.4)。

図 3.4: 三光精衡所にあるスパッタリング装置とその模式図 [16]

焦点距離

生産される分割鏡の焦点距離は 28 m~29.2 m の間で 3 種類としている。これは LST の主 鏡に焦点距離 28 m、口径 23 m の放物面型複合鏡が採用されており、放物面鏡は中心から放 射方向に対して曲率が変化するため、球面鏡である分割鏡は 23 m の口径に合わせて焦点距 離に広がりを持たせる必要があるためである。

スポットサイズ

チェレンコフ光の楕円構造を集光面でイメージングするには、分割鏡のスポットサイズが 集光面の1 pixel よりも十分に小さい必要がある。LST の集光面の1 pixel はライトガイドの 大きさである 50 mm であり、CTA では焦点距離において、その1/3 の大きさにスポットの 80%の光が入る集光能力を要求値としている。集光性能は 80%の光が入る円の直径を D80 と 定義し、D80(焦点距離 f)≤16.6 mm、D80(曲率半径 2f)≤33 mm となるかで評価する。

反射率とその経年変化

チェレンコフ光は、大気の吸収を受けて短波長 (青色) 側にピークを持つスペクトルとなる。 チェレンコフ光を十分に反射させるため、分割鏡の反射率の要求値は波長 400 nm で 90%以 上、波長 300 nm~600 nm で 85%以上としている。また、望遠鏡は野外に設置されるため、 大量の分割鏡は雨風にさらされる。そのため自然環境において反射率の経年変化率を年 1%以 内に抑える耐久性が必要となる。

耐水 (水抜き)

分割鏡は雨にさらされる。鏡の内部のに水が溜まってしまうと、重量の増加だけでなく、 内部の劣化、さらには気温の低下によって内部の水が凍結すると、膨張によって外側に圧力 がかかり、分割鏡が破壊されてしまう。簡単には水が入り込まないように外部を密封し、さ らに万が一水が侵入した場合でも。内部のハニカムにスリットをいれ、さらに水抜きの穴を あけることで、侵入した水が外に抜けていく作りとなっている。

重量

LST は先に述べたとおりガンマ線バーストの follow up 観測の際に 20 秒で 180°回転させる ため、総重量 70 トン以下となっている。そのため分割鏡 1 枚は 50 kgf 以下としている。こ れは鏡の内部をハニカム構造にすることで達成している。

3.2 2f法

3.2.1 2f 法概要

球面鏡の集光性能を評価する方法として、2f 法という方法がある。2f という意味は、f は focal length(焦点距離)を表しており、2f はその2倍という意味である。

球面鏡の反射の様子を図 3.5 に表す。球面鏡ではある点において鏡面から曲率中心に向か う方向は法線と一致する。よって平行光に対する正反射から、以下の式が導ける。

$$h = R\sin\theta = (R - f)\sin 2\theta \tag{3.1}$$

ここで光軸に近い場合を考えると θ は小さくなるため $\sin \theta \approx \theta$ 、 $\sin 2\theta \approx 2\theta$ となり、式 (3.1)は

$$h \approx R\theta = (R - f)2\theta \tag{3.2}$$

$$R \approx 2f \tag{3.3}$$

となる。よって 2f は光軸に十分近い位置 (sin θ を近似できる位置) において曲率半径を表している。

図 3.5: 平行光に対する球面鏡の反射の図

2f 法とは曲率半径 (2f) だけ離したの位置に点光源と検出器を置き、点光源から放たれた光 が球面鏡によって集光されて作られた像を直接観測し、そのスポットを評価する方法である。 球面鏡はさきに述べたとおり曲率中心方向と法線が一致するため、光源を曲率中心から光軸 に垂直な方向に少しずらして設置すると、鏡面の正反射によって、光軸に対して線対称の位 置に像を作る。この原理を利用し、光源に点光源に近いものを用いることによって、鏡の集 光性能を評価することが可能である (図 3.6)。

図 3.6: 2f 法

鏡生産直後の初段階評価として、現在製作を依頼している三光精衡所の工場内に 2f 法装置 を設置して、測定を行っている。2f 法では曲率半径を利用するため、装置全長は曲率半径に 依存する。LST 用の分割球面鏡は焦点距離が 28 m~29.2 m となっており、装置全長は 60 m 近く必要となる。幸い工場内にこのスペースを確保することが出来ている。

これまで生産された分割鏡はすべてこの測定が行われていたが、解析の手段やスポットの 検出方法などの測定における詳細設定がなされていなかった。そのため、三光精衡所で行う 2f法における測定手段の決定とその手段によって得られたデータから鏡の評価が行えるよう な解析方法の開発を行う。

3.2.2 写真撮影による測定

測定にはLEDを光源として使用し、鏡面に反射した光をテフロン板を利用したスクリーンに投影する (図 3.7)。そしてスクリーンに映るスポットを目で見て最小となる位置を求め、 その位置でスポットが映ったスクリーンを三脚に固定したデジタル一眼レフカメラでマニュ アル撮影する。このような作業でスポットを検出する。また、同じ条件で光源がない状態の バックグラウンド画像も撮影する。機材の詳細を表 3.1 示す。

表 3.1: 2f 法使用機材とその設定

機材名 (型 or 材質)	パラメータ	設定値
LED(OSRAM 製 ZNN26862323_A GTC1219-02J07) スクリーン(テフロン製)		
カメラ (Canon EOS 60D)	シャッタースピード 絞り数値 (F 値) ISO(CCD 素子感度) 画素数	1/5, 1, 3.2 s 6.3 100 5184×3456
レンズ (EF-S55-250mm f/4-5.6 IS II)	焦点距離	$250.0 \mathrm{~mm}$

図 3.7: スクリーン (左) と 58 m 先に置かれた分割鏡の見え方(右)

各機材の位置精度はそのまま曲率半径に効いてくるため、巻尺を使い、曲率半径が誤差 15cm 以内となるように決定している。スポットの裾部分(イメージ中心から離れた位置に散 らばった比較的弱い光) まで捉えるため、シャッタースピード長く設定しており、3 種類の設 定があるのは、撮影環境に対して最も解析しやすい画像を使うためである。ISO とはデジタ ルカメラにおいて CCD 素子の電気信号の増幅を表しており、この ISO を落とし、CCD の感 度を下げることにより、CCD を含めた電子回路内の自由電子の不規則な熱振動によって生 じるノイズ (暗電流ノイズと呼ばれる)の影響を抑えている。

3.2.3 撮影画像の解析

2f 法装置により撮影されたスポット画像から、分割鏡の仕様要求である D80 を求める。

RAW 画像からデータを取り出す

撮影したデータは RAW 画像として保存する。RAW 画像とは何も加工されいない生デー タである。例えば JPEG 画像などは、撮影後、人の目に見やすいように色の補正や明るさの 補正などの加工が加える処理が行われてしまうが、RAW データは撮影時そのままの物理量 が保存される。よって RAW 画像からデータを取り出す (現像という) ことによって、実験で 得られたそのままの値を求めることが出来る。RAW 画像を現像する方法として、dcraw と ImageMagick いう 2 つのフリーソフトを使用する。

• dcraw

Dave Coffin 氏が開発公開している RAW 画像ソフトである。ほとんどの RAW 画像を 現像出来るが、現像できる RAW 画像に完全に対応しているわけではないので、現像後 の中身を確認するなどの検査は必要となる。例えば今回使った Canon 製のカメラが使 用している RAW 画像である CR2 ファイルの場合は、現像すると全ての pixel に 2¹⁵ が 足し合わされていた。変換の際、「-c」(現像した画像データを標準出力に出力)、「-D」 (明度調整をしないドキュメントモード)、「-4」(リニア 16 ビットとして保存する) とい うオプションを使用した。

ImageMagick-6.6.8-10
 画像を操作したり表示したりするためのフリーソフトである。このソフトにある covert
 コマンドを利用すると、現像したデータを解析できるデータ形式に変換できる。今回
 は FITS 形式に変換するのに、このソフトを用いた。

FITS ファイルに変換した RAW 画像の中には緑、赤、青の色の情報を持った CCD の pixel がベイヤー配列で並べられている。ベイヤー配列とは緑、赤、青を 2:1:1 の比率で同じ色が 隣り合わないように規則的に並べられたものである。カメラの CCD 面の素子がその配列で それぞれの対応した色のみを感知する仕組みとなっており、その色情報を処理し、JPEG の ようなカラー写真をつくる。先も述べたように RAW 画像は生データであるため、この配列 がそのまま残っている。今回はこの 3 色のうち、地上に届くチェレンコフ光の波長に近い青 色のみを抽出して解析を行う。3 色のうち、青の一色のみを抽出すると、画像の解像度とし ては 2 倍悪くなる (図 3.8)。しかし、もともとカメラの画素数多く、悪くなった解像度を調べ ると、1 pixel は 0.1 mm 以下に対応しており、解析には十分である。画像内にはスクリーン に張ってあるスケール (メジャー) が映りこんでおり、その目盛を読み取ることにより、pixel と実際の長さの対応を求めることできる。

図 3.8: ベイヤー配列の青色のみを抽出

バックグラウンド処理

スポットを撮影した条件と同じ状態にし、光源を off にして撮影してバックグラウンド画 像を得る。バックグラウンド画像も同様に RAW 画像で撮影し、青のみを抽出する。その後、 バックグラウンド画像を最適化し、元のスポット画像との差分を取ることによってスポット 光のみの画像を得る。バックグラウンドの最適化は以下のように行う。

スポット画像のうち、スポット光が完全に入っていないと思われる画像の淵 200 pixel の 範囲とそのバックグラウンド画像における同様の範囲を対象とする。この範囲の pixel 総数 を *M*、範囲内のある点 *m* におけるスポット画像の光量を *I_m、バックグラウンド画像の光量* を *I_{B.m}* とし、以下の式に代入して平均係数 A を求める。

$$A = \frac{1}{M} \sum_{m=1}^{M} \frac{I_m}{I_{B,m}} = \left\langle \frac{I_m}{I_{B,m}} \right\rangle \tag{3.4}$$

このAをバックグラウンド画像にかけることにより、最適化とする。そして各 pixel ごとに 以下のような処理を行う。

(解析画像の光量: $I_{A,n}$) = (スポット画像の光量: I_n)- $A \times (バックグラウンド画像の光量:I_{B,n}$)

D80の算出

まずバックグラウンド処理を行ったスポット画像からスポット光量 $I_{A,n}$ の重心座標 (x_G, y_G) を求める。総 pixel 数を N とする。

$$x_{G} = \frac{\sum_{n=1}^{N} I_{A,n} x_{n}}{\sum_{n=1}^{N} x_{n}}, \qquad y_{G} = \frac{\sum_{n=1}^{N} I_{A,n} y_{n}}{\sum_{n=1}^{N} y_{n}}$$
(3.5)

求めた重心 (x_G, y_G) から半径 r 方向にすべての光量が入ると思われる十分離れた半径 r_{100} (今回のスポット画像 1600 ×1600 pixel に対しては 750 pixel とした)をとり、その円の内 部に含まれるでの光量 $I_{A,100}$ をもとめる。この $I_{A,100}$ をこのスポットの総光量とする。D80 とは総光量の 80%が入る直径であり、つまりここでは $I_{A,100}$ の 80%の光量 $I_{A,80}$ が全て入る直径となる。

D80 を求めるため、スポット画像について $4\pi r^2 dr$ という微小シェルを考える。dr=0.1 pixel とし、この微小シェルに含まれる光量を半径方向に $I_{A,80}$ 以上となるまで足し合わせていき、 $I_{A,80}$ を超える直前の r を求める。この r が総光量の 80%が入る半径であり、その 2 倍、つま り直径が D80 となる (図 3.9)。

図 3.9: スポットのイメージ (青の部分) に対する D80 算出方法の模式図

3.2.4 測定結果

実際に撮影された RAW 画像を JPEG 変換したものと、FITS ファイルに変換後に青のみ を抽出した画像を図 3.10、図 3.11、図 3.12に示す。画像は左の上下 2枚が JPEG 画像とその バックグラウンド画像、右側がバックグラウンド処理後のスポットの FITS 画像となってお り、下段の 2枚はスポット画像をカラーコントアで表したもの (左)とz軸を光量にしたもの (右)であり、上段はそのx軸射影とy軸射影となっている。JPEG 画像を除く右側 4枚の画 像について、総光量 (積分した量) は一致している。

図 3.10: シャッタースピード 1/5 s

図 3.12: シャッタースピード 3.2 s

画像を描きだした結果、シャッタースピードが 3.2 s のスポット画像はサチュレーション を引き起こしていることが分かる。そして、サチュレーションを起こしていない 1/5 s と 1 s のスポット画像のうち、シャッタースピードが長い 1 s の画像を解析する。これはシャッター スピードが長い方が、射影した画像からわかるようにスポットとノイズとの比 (SN 比) が大 きくなり、スポットの周辺のより細かな薄い光の広がりまで見えることが期待できるためで ある。

シャッタースピード 1 s の画像について光量重心からの微小シェルごとの光量と半径の関係は図 3.13 となった。これを r₁₀₀ とした 750 pixel まで足し合わせる。結果を以下の表 3.2 に示す。

図 3.13: 微小シェルごとの光量 (縦軸) と半径 (横軸)の関係

表 3.2: シャッタースピード1sのスポット画像の解析結果

パラメータ	値
1mm(画像内のスケール)	9.975 ± 0.425 pixels
バックグラウンド平均係数(A)	1.00470968165
r_{100}	750 pixel
総光量 $(I_{A,100})$	5.6828×10^{7}
D80 光量 (I _{A,80})	4.54624×10^{7}
D80(pixel)	180 pixels

図 3.13 において、赤い線が 80%の光量となる半径を表している。結果、80%の光量となる 半径は 180 pixel となった。画像内のスケールと pixel との対応は画像内のメジャーの目盛で 1 cm が何 pixel 分に相当するかを読み取って対応させている。画像のメジャーの目盛には 幅があるため、その分をエラーとしている。 これらの結果から、この鏡の D80 は 18.08±0.77 mm となった。これは JPEG 画像から確認しても、もっともらしい値であり、2f 法により D80 を求められたと言える。

3.2.5 解析の安定性

2f 法の測定によって得られた画像から D80 を求めることが出来た。これを実用化するため に、この解析方法に対する安定性の調査を行った。その方法として、解析に使用したものと 同じ鏡のデータを使用し、バックグラウンド平均係数 (A) を変化させて D80 がどう変化する かを求めた。結果を図 3.14 に示す。

図 3.14: バックグラウンド最適化係数の変化と D80 関係 (右:拡大図)

この結果、最適化係数 (A) の 0.1%変化すると、最小でも 23 pixel=約 2.3 mm(10%以上) ずれてしまう。実用化のためには少なくともこれ以下のずれに抑える必要がある。今後、実 測のためにはどこまでの安定性が必要となるのか、また、そのための改善方法を調査する必 要がある。

3.3 Phase Measuring Deflectometry (PMD)法概要

3.3.1 Phase Measuring Deflectometry (PMD)法

CTA 計画では鏡の評価方法として、2f法とは別に鏡の形状も評価できる方法として Phase Measuring Deflectometry(PMD)法を採用した。PMD法は共同研究機関であるドイツの Friedrich-Alexander Universitaet Erlangen-Nuernberg(フリードリヒ・アレクサンダー大学エアラン ゲン=ニュルンベルク:以下、エアランゲン大学)で開発され、現在は 3D shape 社で改良 されている反射体に対する新しい形状測定方法である。この方法は位相シフト法とステレオ カメラ写真測量を利用しており、スクリーンを使い位相模様を反射体に映しこみ、正反射に よって出来る像を解析することによって反射体表面の形状を測定する。CTA 計画ではこの PMD 法の測定結果に対して、さらに反射の光線追跡 (レイトレース) シミュレーションを行 うことにより、分割鏡をその表面形状からスポットサイズまで評価を行う (図 3.15)。

図 3.15: PMD 法による評価の模式図 [23]

PMD 法の測定は位相模様の像を捉えて行うため、2f 法のように集光する必要がない。そのため装置の全長は曲率半径 (焦点距離)に依存せず、測定装置の小型化を可能とする。さらには光軸調整などの作業を必要としないため、測定時間も短縮できる。また、PMD 法は表面形状の測定による評価のため、2f 法にはなかった反射鏡の表面形状の情報を得ることができ、それをもとにした分割鏡の開発における議論を可能とする。

3.3.2 測定原理

PMD 法は位相シフト法とステレオカメラ写真測量の原理を組み合わせたものである。以下それぞれの原理を説明する。

位相シフト法 [19]

位相シフト法とは対象 (非反射体) に位相模様を投影させ、その位相のずれから対象の形状 を測定する方法である。ある対象の物体 (非反射体) に投影素子を使い、正弦波 (sin 波) を投 影し、その対象を写真で撮影する。するとカメラの画素 (x, y) 映る輝度 I_n(x, y) は

$$I_n(x,y) = B(x,y) + A(x,y)\cos(\phi(x,y) + \frac{n\pi}{2})$$
(3.6)

と表せる。B(x, y)はバイアス成分、A(x, y)は撮影時のコントラスト成分、そして $\phi(x, y)$ は 画素 (x, y)における正弦波の位相である。

図 3.16: *I_n* とその成分

ここで、式 (3.6) に n = 0, 1, 2, 3 を代入する。これは正弦波を 0 から $3\pi/2$ まで $\pi/2$ ずつずら したことになる。

$$I_0(x,y) = B(x,y) + A(x,y)\cos(\phi(x,y))$$
(3.7)

$$I_1(x,y) = B(x,y) + A(x,y)\cos(\phi(x,y) + \frac{\pi}{2})$$
(3.8)

$$I_2(x,y) = B(x,y) + A(x,y)\cos(\phi(x,y) + \pi)$$
(3.9)

$$I_3(x,y) = B(x,y) + A(x,y)\cos(\phi(x,y) + \frac{3\pi}{2})$$
(3.10)

この4つの式を $\phi(x, y)$ ついて解くと

$$\phi(x,y) = \tan^{-1} \frac{I_3(x,y) - I_1(x,y)}{I_0(x,y) - I_2(x,y)}$$
(3.11)

この式 (3.11) から、対象に映る正弦波の位相は、 $\pi/2$ ずつ位相をずらした輝度を測定することによって求めることが出来る。位相シフト法では図 3.17 のように、投影素子面の同位相 $\phi(x,y)$ とプロジェクターの光学中心の位置座標点で出来る面と、カメラの視線方向の直線と の交点を求め、対象の座標を決定する。

図 3.17: 求めた位相から対象の座標を求める [19]

ステレオカメラ写真測量 [20]

ステレオカメラ写真測量とは複数台のカメラで対象を撮影し、その画像を解析することに よって、対象を3次元測定する方法である。cam1、cam2という2台のカメラについて考え る。カメラと対象が存在する全体座標系を(X,Y,Z)とし、それぞれのカメラによってとら れた写真 (CCD 面)の座標系を (x_1, y_1) 、 (x_2, y_2) とする。簡単化するため、cam1、cam2 に焦 点距離 cとなる同じ設定のカメラを使い、cam1 の位置を原点する。また、それぞれのカメ ラの位置は X 軸上にあり、Y 軸は平行で、Z=0で一致しているとする。この状態を図 3.18 に示す。

図 3.18: 特別な条件におけるステレオ写真測量

図 3.18 はそれぞれ θ_1 、 θ_2 の三角関数による、測定点 (X, Y, Z) とカメラ焦点面上の測定点 (x_1, y_1) 、 (x_2, y_2) との対応を解りやすくするため、各カメラは焦点面をレンズに対して反対 側に示している。これらの対応は以下の式で求められる。.

$$X = \frac{x_1}{x_1 - x_2}D, \qquad Y = \frac{y_1}{x_1 - x_2}D, \qquad Z = \frac{-c}{x_1 - x_2}D$$
(3.12)

この3つの式をx1、y1 について解くことにより、写真測量の基本式を得る。

$$x = -c\frac{X}{Z}, \qquad y = -c\frac{Y}{Z} \tag{3.13}$$

この基本式を任意のカメラの状態で一般化するには、位置と回転に対して座標変換を行う必要がある。全体座標系を(X,Y,Z)とし、全体座標の置けるカメラの座標点を (X_0,Y_0,Z_0) とする。また、カメラ固有の座標系を(X',Y',Z')とし、X'軸、Y'軸、Z'軸周りの回転をそれ ぞれ ω 、 φ 、 κ とする (図 3.19)。

$$\begin{pmatrix} X'\\Y'\\Z' \end{pmatrix} = R_{\omega\varphi\kappa} \begin{pmatrix} X - X_0\\Y - Y_0\\Z - Z_0 \end{pmatrix}$$
(3.14)

 $R_{\omega\varphi\kappa}$ は回転行列を表す。

$$R_{\omega} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & -\sin \omega \\ 0 & \sin \omega & \cos \omega \end{pmatrix}, \quad R_{\varphi} = \begin{pmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{pmatrix}, \quad R_{\kappa} = \begin{pmatrix} \cos \kappa & -\sin \kappa & 0 \\ \sin \kappa & \cos \kappa & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{\omega\varphi\kappa} = R_{\omega}R_{\varphi}R_{\kappa} = \begin{pmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ a_7 & a_8 & a_9 \end{pmatrix}$$
(3.15)

 $a_1 = \cos \varphi \cos \kappa$

 $a_2 = -\cos\varphi\sin\kappa$ $a_4 = \cos\omega\sin\kappa + \sin\omega\sin\varphi\cos\kappa \quad a_5 = \cos\omega\cos\kappa + \sin\omega\sin\varphi\sin\kappa \quad a_6 = -\sin\omega\cos\varphi$

 $a_3 = \sin \varphi$ $a_7 = \sin\omega\sin\kappa - \cos\omega\sin\varphi\cos\kappa$ $a_8 = \sin\omega\cos\kappa + \cos\omega\sin\varphi\sin\kappa$ $a_9 = \cos\omega\sin\varphi$

図 3.19: 一般的な条件におけるステレオ写真測量

よって基本式は以下のようになる。

$$X = X_0 + (Z - Z_0) \frac{a_1 x + a_4 y - a_7 c}{a_3 x + a_6 y - a_9 c}$$
$$Y = Y_0 + (Z - Z_0) \frac{a_2 x + a_5 y - a_8 c}{a_3 x + a_6 y - a_9 c}$$
(3.16)

使用するすべてのカメラで位置と回転の係数 X_0 、 Y_0 、 Z_0 、 ω 、 φ 、 κ をキャリブレーション から求める。未知数が6つで式が2つあるため、3点以上の既知の点(基準点という)が分か れば、キャリブレーションが可能である。キャリブレーションによってすべての係数を求め た後、使用したカメラの数分の式 (3.16)の連立方程式をから (X,Y,Z)を求めことができる。

PMD 法の測定原理 [23],[24]

PMD 法では位相シフト法による形状測定を利用する。しかし反射体の場合、プロジェク ターのような点光源からの光によって位相模様を反射体に映しても、正反射によって点光源 の像としてカメラに捉えられてしまうため、位相を投影することが出来ない(図3.20)。そこ で PMD 法では投影素子とプロジェクターの変わりに位相模様を写したスクリーンを使用し、 スクリーンの像を反射体の写し、カメラで捉えることで位相模様の投影を実現する。

スクリーンを使用する場合、反射体でも位相模様を投影することが可能となるが、位相シ フト法のように投影素子とプロジェクターをつないだ面を決定できす、図3.21のようにカメ ラの CCD 素子とレンズ中心とで出来る視線ベクトル v と位相 q に対し、対応する表面の点 sと法線 n 組み合わせが複数存在してしまう。

図 3.20: 非反射体 (左) と反射体 (右) に対して点光源と投影素子による位相模様投影

図 3.21: スクリーンにより位相模様を投影した場合 [23]

そこで PMD 法では、位相幅が素数である位相とそれらと直交する同様の位相幅の位相の 計4種類の位相投影パターンに対し、位相シフト法の位相決定原理をスクリーンに適応させ ることで、スクリーン上の座標を一意に決定し、さらにステレオカメラ写真測量を利用する ことで、対象表面の点 *s* と法線 *n* を一意に決定する。

点 *s* と法線 *n* を一意に決定する方法を説明するために、図 3.22 のような状況を考える。 cam1 における視線ベクトル \vec{v}_1 と対応するスクリーン上の位相 q₁ に対し、 \vec{v}_1 の延長線上の 点 s_i を仮定し、法線 $\vec{n}_{1,i}$ を求める。さらに cam2 における視線ベクトルで、延長線が点 s_i と 交わる $\vec{v}_{2,i}$ とそれに対応する位相 $q_{2,i}$ から法線 $\vec{n}_{2,i}$ を求め、2つの法線を比較する。この計算 を \vec{v}_1 の延長線上ある一定の範囲で計算していく。真の点 s は必ず \vec{v}_1 の延長線上に存在し、 またその点の法線は一意である。そのため、計算結果において求まる 2 つの法線 $\vec{n}_{1,i}$ と $\vec{n}_{2,i}$ が一致する位置が真の点 *s* となる。

図 3.22: ステレオカメラのよる点 s の決定 [23]

上記のようにある点 $s(x_s, y_s, z_s)$ とその法線 $\vec{n}(n_x, n_y, n_z)$ が求まると、そこから点sに対応 した微小面kを求めることが出来る。1台のカメラ (cam1)について、点sに対応した CCD 面の点 p_1 と隣合う点 p'_1 に対応した視線ベクトル $\vec{v'_1}$ を求める。そしてそのベクトルの延長線 と先ほどの微小面 k_1 から交点s'を求める。点 p'_1 に入る輝度から位相シフト法によってスク リーン上の点 q'_1 が分かり、 $\vec{v'_1}$ 、 $s'、q'_1$ からその点における法線 $\vec{n'_1}$ と微小面 k'_1 が求まる。こ の作業を繰り返すことによって、微小面の集合として、表面形状が測定できる (図 3.23)。

図 3.23: 表面形状の決定

PMD では隣り合う p_1 、 p'_1 の判別を pixel 単位でなく正弦波でフィットしたときの位相差で 判断するため、CCD カメラの pixel 以下の表面座標及び法線の測定精度を実現することが出 来る (図 3.24)。仮にカメラの 1pixel=3.75 μ m とし、焦点距離 f=16 mmのレンズで距離 d=5 m先の対象を撮影した場合、カメラ pixel による測定精度 M_q は

$$M_q = \frac{d \cdot pixel}{f} \tag{3.17}$$

より約1.2 mmとなるが、正弦波のフィットによって、これ以下の測定が可能である。

図 3.24: pixel を sin 波でフィット

3.3.3 装置製作

LST 用の分割鏡は日本で生産されるため、日本での PMD 法測定の確立が必要となる。そのためにまずは測定装置を製作した。ドイツのエアランゲン大学にはすでに (図 3.25)のような MST 用分割鏡 (対辺間 1.2 m)の PMD 装置がある。この装置はスクリーンとして液晶テレビを使用し、中央に置いた鏡にそれを写し、4 台の CCD カメラで撮影する。4 台の CCD

カメラはそれぞれ鏡の右上、左上、右下、左下部分を担当し、それらカメラの位置を調整し て、4 台の画像の合成で鏡面全体にスクリーンが映しこめるようになっている。この装置を もとに LST 用に拡張する。

図 3.25: MST 分割鏡用 PMD 装置 [25]

LST 用 PMD 装置について、MST 用のものと同様に液晶テレビをスクリーンとし、4 台 の CCD カメラを使用する。液晶テレビにはシャープ製 LC-60L5(60 インチ)を使用し、CCD カメラには Alilied Vision Technologies(AVT) 社製 Stingray F-125 B を使用し、レンズには PENTAX 社製 CCTV Lenses(焦点距離 16 mm)を使用した。それぞれの装置要素のパラメー タである、スクリーンの大きさ (748 mm×1329 mm)、LST 用分割鏡の大きさ (対辺間 1.51 m)、CCD カメラの視野 (12°42'×17°03')、実験室のスペース (3 m×8 m×3 m)を元に、スク リーンをステレオ撮影の部分のためのオーバーラップ部分を残しつつ鏡全面に映し込めるよ うにそれぞれの位置を決定した。方法としてはまず縦と横方向、横と高さ方向の 2 次元の図を 2 種類考え、それを組み合わせて大まかな配置を決定する。その配置を元にフリーの 3D-CAD ソフト、Creo Elements Direct Modeling Express 4.5(日本語版)を使用して 3 次元の装置モデ ルを作り、カメラの視野を 3 次元上で直線を引くことで再現し、スクリーンの虚像を用いて、 どのように鏡とテレビが入るかを確認した。 以下の図 3.26、図 3.27、図 3.28 に 3D-CAD で 設計した装置の完成予想図と視野の確認結果の図を示す。

図 3.26: 3D-CAD による PMD 装置の完成予想図

図 3.27: 3D-CAD による PMD 装置の設計図

図 3.28: モデルにおけるスクリーンの虚像を用いたの視野確認

図 3.28 における視野確認の結果について、右の図は左の図のスクリーン虚像部分を拡大した ものである。カメラが鏡を撮影するのに必要な視野を表す直線の延長線がスクリーンの虚像 内に収まっていることが分かる。これは鏡にスクリーンを映しこんで撮影が出来ていること を表している。

作成した設計図を元に東京大学宇宙線研究所 1F 実験室にて装置の製作を行った。装置の 骨組みにはNIC Autotec 社のアルミフレームを使用した。AFS-6060F-6 という断面が一辺 6 cmの正方形で出来ているアルミフレームを基本とした。このアルミフフレームは1 m の長 さに対し、75 kg 重の負荷を与えても変形を起こさない強度を持ち、またアルミフレーム同 士はブラケットと呼ばれるジョイントパーツを使用することで、溶接の必要がないという特 徴を持つ。実際に製作し、完成した PMD 装置を (図 3.29) に示す。

完成した装置に実際のLST用の分割鏡を置き、視野の確認を行った (図 3.30)。結果、設計通りに 4 台のカメラによって鏡全体にスクリーンを投影出来ている。

PMD 法の測定、解析などを行うソフトウェアは Soft-PMD というもので、これはエアランゲン大学で開発されており、それを使用する。

図 3.29: 完成した PMD 装置

図 3.30: 各 CCD カメラの視野

3.3.4 キャリブレーション

PMD 法の測定を行うためには、スクリーンの位置と向き (スクリーンに投影する位相の位 置決定に関係する)、各カメラの位置と向き (視線ベクトルの決定の決定に関係する)、あるカ メラの視線ベクトルと他のカメラの視線ベクトルの対応 (ステレオカメラによる始点決めに 関係する)、というようなパラメータを決定しておく必要があり、これらのパラメータを決定 することをワールド座標キャリブレーションという。PMD 法ではこのパラメータを決定する 方法として、曲率を持った鏡を複数回試測定し、その結果から最も適切なパラメータの組を 決定するという方法をとる。しかし、そもそも PMD 法の原理は、歪みのない見たままの映 像を画像化するカメラ、平面のスクリーンという理想的な条件のもとで考えられている。だ が、実際の装置ではカメラはそのレンズの収差による画像の歪みを持ち、またスクリーンと する液晶テレビは固有の形状を持つ.。そのため、まずはこのカメラ、スクリーン (液晶テレ ビ)の個々が持つ歪みを補正 (カメラキャリブレーション、スクリーンキャリブレーションと 呼ぶ)を行い、理想的な条件に近づけ、その後ワールド座標キャリブレーションを行い、先ほ どの各パラメータを決定する。以下にカメラキャリブレーション、スクリーンキャリブレー カメラキャリブレーション

カメラのレンズはその形状のよる屈折の位置依存性から収差と呼ばれる結像のボケや歪み が存在する。

- 1. 球面収差 光軸上にある点光源からの光が1点に収束しない収差。
- 2. コマ収差

光軸上にない点光源からの光が1点に収束しない収差。

- 3. 非点収差 光軸上にない点光源からの光による同心円像と放射線像の結像点が一致しない収差。
- 4. 像面湾曲収差
 平面の物体の像面が湾曲してしまう収差。
- 5. 歪曲収差

方形の物体が方形の像を結ばず、樽型、または糸巻型などになる収差。

これらはザイデルの5収差(図3.31)として知られている。これらの収差によって、画像は本 来の映像から歪んでしまっている。

図 3.31: サイデルの5 収差 [20]

まずカメラキャリブレーションでは各カメラでテストボードと呼ばれる、ボード上の正確 な位置座標が分かってる複数の点が書かれているカーボンファイバー製のボードを撮影角度 を変えて複数回撮影し、複数枚の画像を得る。図3.32に実際に撮影した画像の1枚を示す。

図 3.32: 実際にテストボードを撮影した画像

画像中の赤い部分はサチュレーション部分であり、青い部分はサチュレーションとは逆の 暗いすぎる部分を表している。これはテストボードの撮影に合わせて露光時間を変えている ため起こる。この画像と元のテストボードの座標と比較し、画像による歪み dx、dy を検出 する。この歪みを以下の式に代入する。

$$dx = x_m - x_m \frac{dc}{c} + x_m (K_1 r_m^2 + K_2 r_m^4 + K_3 r_m^6) + P_1 (2x_m^2 + r_m^2) + 2P_2 x_m y_m$$

$$dy = y_m - y_m \frac{dc}{c} + y_m (K_1 r_m^2 + K_2 r_m^4 + K_3 r_m^6) + 2P_1 x_m y_m + P_2 (2y_m^2 + r_m^2)$$

$$x_m = x - x_p$$

$$y_m = y - y_p$$

$$r_m = x_m^2 + y_m^2$$
(3.18)

式 (3.18) における係数は

x_p,y_p:画像と実際の中心点 (主点軸) のずれ

dc:焦点距離のずれの補正項

*K*₁,*K*₂,*K*₃,*P*₁,*P*₂:画像の歪みの補正項

を表す。この式は画像のテストボードの点の数だけて立てることができ、それらを解析的に 解くことによってこの8つの係数が求められ、もとめた係数を式 (3.18) に代入したものを補 正式として使用する。この計算は Australis という Photometrix 社製のキャリブレーション ソフトを使用した。

スクリーンキャリブレーション

スクリーンとして使われる液晶テレビの画面は平面ではなく歪みが存在し、それによって 位相シフト法から正確な正弦波の位相の位置が求められなくなる。この歪みの補正のため、 スクリーンキャリブレーションが必要となる。スクリーンキャリブレーションではスクリー ン(液晶テレビ)にそれぞれの間隔が正確に解っているドット模様を投影し、それを上記のカ メラキャリブレーションを行ったカメラで複数回、撮影角度を変えて撮影する(図 3.33)。こ

図 3.33: スクリーンキャリブレーションイメージ(右)と実際撮影した画像(左)

の撮影した画像と元のドットのデータを比較し、歪みを求める。この歪みの検出まではカメ ラキャリブレーションと同様のソフトウェア Australis で計算を行う。Australis で歪みを引き 出したのち,そのデータを Soft-PMD に読ませ、各点で歪みに対応した補正式を求め、スク リーン形状を補正する。実際にスクリーンキャリブレーションによって検出したスクリーン 表面が持つ固有の歪みを (図 3.34) に示す。この形状が平らになるように補正をかけている。

図 3.34: スクリーンキャリブレーションにより検出したスクリーンの歪み。カラーバーは赤が凸、青 が凹を表す。

ワールド座標キャリブレーション

実際の測定の際にはこのセクション 3.3.4 の最初に述べたような、装置全体座標 (ワールド 座標) における

- スクリーンの位置と向き (スクリーンに投影する位相の位置決定に関係する)
 : x_{sc}, y_{sc}, z_{sc}, ω_{sc}, φ_{sc}, κ_{sc}
- 各カメラの位置と向き(視線ベクトルの決定の決定に関係する)
 : x_{cam,j}, y_{cam,j}, z_{cam,j}, ω_{cam,j}, φ_{cam,j}, κ_{cam,j}(j = 0, 1, 2, 3)
- 各カメラの視線ベクトル対応テーブル(ステレオカメラによる始点決めに関係する)

などのパラメータが必要となる。

そこで PMD 法では始めにスクリーンの座標と向き ($x_{sc}, y_{sc}, z_{sc}, \omega_{sc}, \varphi_{sc}, \kappa_{sc}$) と各カメラの 座標と向き ($x_{cam,j}, y_{cam,j}, z_{cam,j}, \omega_{cam,j}, \varphi_{cam,j}, \kappa_{cam,j}$ (j = 0, 1, 2, 3))、ワールド座標原点 O_w の 初期値を仮定する。まずは任意でワールド座標原点の初期値を定める。これは実際に鏡を置 いたときの鏡の表面上で鏡の中心に近い位置を仮定する。その原点にテストボードを置き、 PMD 装置に設置したカメラで撮影する。その画像から写真測量の原理を用い、解っている テストボード座標 (X, Y, Z) から逆算してカメラ座標と向きの初期値を決定する (図 3.35)。ス クリーンの座標の初期値についてはメジャーなどで測った値を使う。

図 3.35: 原点、カメラ座標と回転の初期値決定

それぞれの初期値決定後、1枚の球面鏡に対して設置条件 (ある方向に傾きを与える) を変 えて複数回の写真撮影のみの試測定を行う (図 3.36)。そしてその鏡を理想球面と仮定した 上で、各カメラの視線ベクトル対応テーブルを除く測定に必要なパラメータに鏡の曲率半径 Rとワールド座標原点を加えた $x_{sc}, y_{sc}, z_{sc}, \omega_{sc}, \varphi_{sc}, \kappa_{sc}, x_{cam,j}, y_{cam,j}, z_{cam,j}, \omega_{cam,j}, \varphi_{cam,j}, \kappa_{cam,j}, R, O_W, (j = 0, 1, 2, 3) の全てをパラメータをフリーパラメータとして、試$ 測定結果と初期値から最も適切な同時解を求める。その後その同時解をもとに各カメラの視線ベクトル対応テーブルを作成する。この計算は Soft-PMD 内で行った。

図 3.36: ワールド座標キャリブレーションにおける鏡の設置バリエーション

上記のキャリブレーションを行い、すべてのパラメータを求めた。

3.3.5 測定

測定

いくつかの LST 用 1.51 m 試作分割鏡のうちの 1 枚 (以下 s_MIR と呼ぶ) の測定を行う。 まずは周囲の環境と対象の大きさに合わせて soft-PMD 内でカメラの露光時間と使用する位 相幅の設定を行った。測定では、セクション 3.3.2 で述べた 4 つの位相パターンを更に長い 位相幅と短い位相幅の 2 セットを使用する。これは長い位相幅は比較的大規模な構造の測定 に強く、短い位相幅はより細かい構造の測定に効果的であり、PMD 法では両者を使うこと で大型のものの細かい構造までの測定を可能とするためである。LST 用 1.51 m 分割鏡の測 定では位相パターンの Stretch Factor を 1 と 20 で使用した (Stretch Factor = 1 でスクリー ンの縦の長さの間に 7 波長映る。20 の場合はその 20 倍となる)。各カメラの露光時間のパラ メータは 60(=1 s) 以下でサチュレーションを起こさない値とした。

このような設定で実際に LST 用 1.51 m 分割鏡を測定を行った。

測定結果

測定結果を以下の図 3.37 に示す。理想球面からのずれは理想球面をフィッティングし、結果の球面を引いたものである。曲率の分布は mean curvature を表している。mean curvature とは曲面のある点 p₀ における法線ベクトルと任意の接線ベクトルが作る面 (法平面) ともとの曲面との接線における点 p₀ の曲率について、任意の接線ベクトルを変化させたときの最大値と最小値の平均値のことである。レイトレース結果は測定結果のデータから 2f 法のレイトレースを行い、最少のスポットサイズとなった位置とそのスポット形状を表している。PSF

図 3.37: 測定結果 (s MIR)

は Point Spread Function のことであり、スポットの広がりを表す (スポットサイズ)。画像 内の赤い円は D80 を表す。

結果、フィットした理想球面は半径 56.2451m の球面となりそこからのずれは-260 µm~330 µm 以内、スポットサイズは 2f=56 m で D80=131.3mm という測定結果を得た。しかし、鏡表面の測定結果画像から明らかに PMD 装置がまだ不完全であるということが解る。PMD 法の測定は4 台のカメラ視野のオーバーラップ部分でステレオ測定により表面の点を求め、そこからは各カメラが独立に形状を測定し、最終的には4 台のカメラの結果の画像を合成プログラムにて合成し、1 枚の鏡の画像とする。この測定結果の画像にはその合成の跡がはっきりと見えることから、PMD 法の測定における合成プログラムが上手くいっていないと考えられる。その影響でスポットサイズ画像もスポットが広範囲に散らばった形状となってしまっている。

この改善のため、再度ワールドキャリブレーションを行い、また、この結果を開発元であ るエアランゲン大学にて更に解析してもらい、合成プログラムの改善を行ってもらった。エ アランゲン大学にて改善した合成プログラムによる測定結果を以下の図3.38示す。この解析 結果、図3.37に比べ、合成の跡が薄くなったのが確認できる。理想球面からのずれは-22 µm ~26 µm 以内となり、一桁小さくなった。またスポットサイズは一つにまとまり、2f=57.98 m、D80=21.68 mm という結果が出ている。これらの結果から、合成プログラムによる合成 が改善されたといえる。

この結果が現状のワールドキャリブレーションの状態に特化した改善なのか、根本的な改善なのかを確かめるため、再度ワールドキャリブレーションを行い、前回と同様の鏡を60°、 120°回転させて測定を行った。結果を以下の図3.39に示す。

図 3.38: エアランゲン大学による解析結果 (s MIR)

図 3.39: 鏡を回転させて測定した結果 (s_MIR)

この結果、確かに合成は改善されているが、回転をさせても表面形状はほとんど変わらず、 またスポット形状も横長の楕円のままであった。このことから、まだ装置の誤差は大きく、 実際の評価として PMD 法を使用するには更なる改善が必要であることが分かった。

3.3.6 装置の改善と再測定結果

装置の改善

前セクション 3.3.5 までで行ったキャリブレーションの状態での PMD 装置ではまだまだ 鏡の評価法としての利用ができない。そのため、装置の改善及びそれに伴ったキャリブレー ションをやり直した。

現状のPMD 装置はスクリーンが下を向くように 30°傾いている。そのためスクリーンキャ リブレーションを行う際、カメラの撮影角度を変えて撮影するには、地面との制約上、ある 程度スクリーンに近い位置で焦点距離の短めのレンズ (f=6mm)の視野全体を使いスクリーン を撮影する必要がある。しかしカメラのレンズは焦点距離が短いほど、また視野の端にいく ほどその収差は大きくなる。キャリブレーションされたカメラとはいえ、なるべく歪みの少 ない焦点距離の長いレンズで視野の端を使わずにスクリーンキャリブレーションを行うこと によってキャリブレーションの精度の向上が狙える。このためにスクリーンを垂直に立てる という変更を行った。実測から、鏡に投影し4台のカメラでとらえられる測定有効面積は鏡 全面に対して十分に余裕があり、スクリーンを垂直に立て、有効面積を減らしても、まだ十 分にまかなえる面積を確保できることが分かっている。スクリーンを垂直に変更することで、 これまでよりも距離を取った位置で長めの焦点距離のレンズ (f=16mm) でスクリーンキャリ ブレーションが可能となる (図 3.40)。

図 3.40: スクリーンの角度の変更

スクリーンの変更の際、前後でスクリーンキャリブレーションを行い、その結果とこれま での結果と比較したところ、顕著な違いが見られた。結果を以下の図 3.41 にまとめる。

この結果から、スクリーンの形状が時間変化を起こしていることが分かる。装置完成初期 からスクリーンを垂直にする直前までの形状変化は、スクリーンが下向きに30°傾いていたた め、図3.41の中央の図からわかるように、スクリーン中央が平均に対して約2mmも出っ張 るという変形を起こし、垂直にした後はその変形がおささえられたと考えられる。スクリー ンを垂直にすることで、ある程度スクリーン形状の時間変化も抑えられることが予想される。

再測定結果

このスクリーンの変形を補正したキャリブレーションで再度以前の測定と同様の試作鏡 (s MIR)の測定を行った。結果を以下の図 3.42 に示す。

図 3.41: スクリーンキャリブレーションにより検出したスクリーンの歪みの時間変化。カラーバー は赤が凸、青が凹を表す。

図 3.42: 再キャリブレーション後の測定結果 (s MIR)

測定した結果、理想球面からのずれは±10 μm 程度となり、曲率の分布画像に見らえれる ような6つの凹凸が確認できる。この凹凸は製造過程で鏡を抑えた時に付いたものである。 また、スポットはより鮮明な画像が得られ、スポットサイズは D80=15.7 mm と要求の半分 の大きさまで捉えられている。

この結果を受け、いくつかの別の鏡の測定も行った。以下、実用分割鏡 (No.1~No.29) の うち、No.7 と No.9 の 2 枚の鏡の測定結果について図 3.43、図 3.44 に示す。

No.7の結果において、理想球面からのずれで中央付近に、生産法であるコールドスランプ 法においてモールドを押し当てた時に出来たと思われる 10 μm の線状の構造が見え、それが 60°回転させた測定の結果には回転に対応して変化しているのが確認できる。また、スポッ トサイズは約要求の半分となっている。No.9の測定結果において、スポットサイズはほぼ要 求値と同じ値となった。2 枚の鏡の結果から、異なった鏡において、要求値の半分の大きさ

図 3.44: No.9 の測定結果

までならそのスポットサイズの判別が出来るということが分かる。この結果から、PMD 装置の測定精度が向上し、現状のPMD 装置では鏡が要求を満たすかどうかの判断が可能であると考えられる。

3.3.7 装置の時間変化

PMD 装置自体の地震などの影響を含めた経年変化による形状変化の測定を行った。全て のカメラの視野内に黒いドットを書いた紙(基準点)を装置をアンカーで固定している地面 に固定し、それを期間をあけて複数回撮影し、画像上での位置の求める。視野におけるドッ トの位置を図 3.45 に示し、その時間変化を以下の表 3.3 に示す。

図 3.45: 各カメラにおける基準点の位置

カメラ	日付	1		2		3		4	
		х	У	х	У	х	У	х	У
cam1	2012.10/05	273.52	222.92	216	849.56	362.56	907.92	1085.68	93.49
	2013.1/9	276.16	223	218.18	49.69	364.99	908.07	1088.23	93.81
	2013.4/25	276.25	222.89	218.57	849.32	365.2	907.82	1088.3	93.66
cam2	2012.10/05	1217.57	201.88	1236.67	802.91				
	2013.1/9	1217.56	201.29	1236.15	802.18				
	2013.4/25	1217.68	200.94	1236.13	801.76				
cam3	2012.10/05	67.15	812.04	189.6	810.03				
	2013.1/9	67.14	812	189.48	810.48				
	2013.4/25	67.94	812.04	189.97	810.58				
cam4	2012.10/05	1126.68	497.49	1219	922.66				
	2013.1/9	1126.61	498.5	1218.49	923.47				
	2013.4/25	1127.2	498.65	1218.83	923.58				

表 3.3: 各カメラにおける基準点の時間変化 (pixel)

測定の結果それそれのカメラの変化は、cam1 は主に x 軸正方向に (平均 2.64 pixel) 変化し、 cam2 は y 軸負方向に変化を起こし (平均-1.045 pixel)、cam3 は pixel 以上の変化は見られず、 cam4 は y 軸正方向に変化した (平均 1.04 pixel)。個々のカメラの pixel サイズ (3.75 μm×3.75 μm) と焦点距離 16mm から画像上での 1 pixel は実際の約 1.2mm に相当するため、最大で 3mm 程度、撮影される画像がずれることになる。この影響は各カメラの視線ベクトルの対応テーブルに効き、始点の座標と法線の決定に誤差を生むと考えられるため、定期的なキャリブレーションが必要である。

3.3.8 2f 法との比較

要求を満たすかどうかの判別が可能となった PMD 装置で、現在までに生産された実用される LST 用分割鏡全 29 枚 (No.1~No.29)の全てで測定を行った。これらの結果を以下の図 3.46 にまとめる。補足としてこのセクションの最後に表 3.4 にて全鏡の全てデータを示す。

図 3.46: スポットサイズ (左)と曲率半径 (右)

この結果、全ての鏡は曲率半径(焦点距離)の要求を満たしており 57.5 m~57.6 m にピー クを持つような分布となった。スポットサイズの要求を満たす鏡は 29 枚中 22 枚となり、こ ちらも 24 mm~27 mm にピークを持つような分布となった。また、このすべての鏡は三光 精衡所による 2f 法の測定でスポットが最少となる曲率半径のみが調べられている。よって宇 宙線研究所の設置した PMD 法装置によって求めた曲率半径と三光精衡所の 2f 法とって求め た曲率半径を比較した結果を図 3.47 に示す。

図 3.47: 曲率半径における PMD 法と 2f 法の比較

図 3.47 の左図について、プロットは全体的に線より下に位置している。これは曲率半径は 2f 法に対し、PMD 法の方が長くなっていることを表している。またその差は図 3.47 の右図 よりスポットサイズが大きくなるほど大きくなっていることが分かる。

この PMD 法と 2f 法との曲率半径の差の理由の一つに、実測とシミュレーションの違いよ る、捉えられる総光量の差によるものが考えられる。PMD 法は表面形状を元にしたレイト レースシミュレーションであり、光源の光のみが存在する理想的な状態であるのに対し、2 f 法は実測であり、人の目でスポットの最小の大きさを判断する。2f 法において感知できな いほどに薄く広がった光が存在する場合、光源の光量を考慮したとしても、双方の総光量に 差が出来てしまう。

仮に鏡が中央部分に対し、外側部分が外に開いている (中央よりも曲率半径が長い) 状態 であったとする。これは鏡の製造上、金型を押し当てて曲率を写し取るため、実際に起こり うる可能性がある形状である。このような鏡では、中央部分で反射した光が鏡により近い位 置で集光し、その時点ではまだ外側部分で反射した光は集光しておらず、広範囲に散らばっ た状態である。この外側部分による散らばった光が 2f 法によって感知できない場合、2f 法 ではこの位置を曲率半径 (焦点) と認識する。一方 PMD 法ではシミュレーションによる光量 感知の理想的な状態であるため、鏡の中心部と外側部分が十分に集光している位置を曲率半 径 (焦点) と認識する。結果、PMD 法の曲率半径の方が長くなる。PMD 法のレイトレース シミュレーションにおいて、実際にこのような集光を起こす鏡を確認している。その鏡のス ポットサイズを以下の図 3.48 に示す。

図 3.48:1枚で異なった焦点を持つ鏡のスポットサイズ (No.5)

	PMD 法			2f 法
番号	D80(mm)	曲率半径 (m)	理想球面フィット (m)	曲率半径(m)
1	27.2	57.68	57.531	56.95
2	18.6	57.66	57.4853	57.525
3	27.4	57.46	57.1141	57.125
4	24	56.64	56.2092	56.24
5	53.5	58.26	57.2987	57.175
6	24.7	57.82	57.4225	57.5
7	16.4	57.02	56.9094	57.42
8	32.2	57.42	56.9082	57.045
9	28.8	57.58	57.2	57.085
10	21.2	56.58	56.2691	56.5
11	25	57.36	57.0773	57.125
12	14.4	56.74	56.6239	56.735
13	15.8	57.18	56.9466	56.925
14	21.2	57.54	57.1922	57.375
15	25.7	57.4	57.0432	57.225
16	46.9	57.86	57.1764	57.4
17	34.4	57.52	57.2232	57.175
18	28.3	57.2	57.0929	57.075
19	14	56.62	56.483	56.725
20	20.3	57.52	57.3496	57.125
21	25.3	57.5	57.0515	7.315
22	23.3	57.4	57.0033	57.135
23	19.4	56.84	56.8549	56.675
24	31.1	57.34	56.7872	56.65
25	25.9	57.58	57.0563	56.525
26	27.5	57.56	57.3587	57.525
27	18.5	57.08	56.8655	56.675
28	52.9	58.14	57.3677	56.775
29	36.7	57.78	57.3443	57.29

表 3.4: LST 用分割鏡測定結果

3.4 新しい評価基準「Constant diameter(Cd)」の検討

3.4.1 Constant diameter の概要

PMD 法と実測である 2f 法の比較の結果がセクション 3.3.8 で述べたような理由なのか、それとも PMD 法のシステマチックエラーなのかを調べるため、スポットサイズに対し新しく Constant diameter(Cd) というパラメータを用いる。

Constant diameter(Cd)とは

Constant Diameter(Cd) とはスポットに対し、その総光量の重心からある直径の円の内側 に入る光量を調べ、最も光量が多くなる位置をその鏡の焦点 (曲率半径) とする評価方法であ る。この評価を用いることで、周囲に薄く飛び散った光量を考慮せず、単純に中心部分に最 も集光した位置を探すことが出来る (図 3.49)。結果として 2f 法に近い値を求めることが可能 となると考えられる。ここでは Cd の直径として D80 の要求値に近い値であるで 33 mm を 使い、Cd33 とする。

図 3.49: Cd33 のイメージ

3.4.2 Cd33 による評価結果

実際に Cd33 用の点光源の反射のレイトレースプログラムを作成し、セクション 3.3.7 にて 示した鏡 (No.5) で異なった焦点を持つ鏡の PMD 法のよる表面測定結果に対して、スポット の Cd33 評価を行った結果を以下の図 3.50 に示す。

図 3.50: No.5 の分割鏡に対する Cd33 計算結果

図 3.50 は左から 2f 法によって求められた曲率半径付近 (57.18 m) の位置でのレイトレース、 Cd33 が最大となる位置 (57.68 m) でのレイトレース、D80 が最小となる位置付近 (58.18 m) でのレイトレースとなっている。全ての画像において黒い円は Cd33 の円を表している。ま た、さらに 1 cm ごとに 56 m~59 m まで Cd33 を求め、プロットしたものを図 3.51 に示す。

図 3.51: 曲率半径 10 cm ごとの Cd33 計算結果プロット

図 3.51 について、青い縦線は 2f 法測定結果の曲率半径 57.175 m を表し、赤い縦線は PMD 法による D80 が最小となる位置を表している。黒い横破線は総光量に対し、80%の値を表し ており、プロットがこの横破線を超えていれば、Cd33 の中に 80%以上の光が入っているこ とになる。この図 3.50、図 3.51 から Cd33 の結果は、2f 法の結果に対し、PMD 法の D80 の 結果よりも約 50 cm 近い値となった。

Cd33 の評価をデータのあるすべての鏡 (No.1~No.29 までの 29 枚) で行い、結果を以下の 図 3.52 にまとめる。

比較のため、D80 での評価による曲率半径を図 3.52 の左に再度示す。図 3.52 の下図より、 スポットサイズが大きいものが 2f 法の結果の曲率半径に近づいていることが分かる。しか し、Cd33 の結果と 2f の結果との差は 0.3 m~0.4 m にピークを持つような分布となり Cd33 の結果の曲率半径の方が長めになる傾向が得られた。この傾向が Cd33 という定義によるも のなのか、PMD 法の測定そのものが持つ影響なのかを調べる必要があり、もし PMD の測 定の影響であれば、この値が PMD 法のシステマチックエラーであると考えられる。

Cd33 の結果と 2f の結果との差の傾向の調査として、Cd33 を Cd16.5(半分の直径) としての評価を行った。

比較の結果、Cd16.5 では 2f 法の結果に近づく方向に移動し、2f 法の結果とよく一致した。 このことからこのピークを持つ分布は PMD 法の測定誤差ではなく、Cd33 の定義によるもの であると言える。また、Cd16.5 の結果は 2f 法の結果とよく一致することから、D80 を用い た PMD 法の結果と 2f 法の結果の違いは、やはり鏡の曲率半径を求める基準と鏡の形状の影 響であるということが言える。PMD 法はシミュレーションによる総光量からの D80 によっ て曲率半径を決めるが、2f 法は人の目で最少となるスポットを判断するため、人の目による バイアスがかかる。Cd16.5 の評価ではこのバイアスをよく表現できている。

望遠鏡の分割鏡のスポットの評価として重要なのは、集光面の 1pixel にどれだけ光を集め られるかであるため、Cd33 や D80 のようなパラメータの評価が有効である。

図 3.53: Cd33(左) と Cd16.5(右)の比較

3.4.3 Cd33のによる鏡面評価

Cd33を使った鏡面形状の評価を行った。No.5の鏡に対し、曲率半径を約56 m~59 m(要求 値)の間で25 cmごとにレイトレースを行い、Cd33を求める。この結果を鏡に反映し、Cd33 に含まれている部分と含まれていない部分とで鏡面を二分した。結果を以下の図3.54に示す。

図 3.54: Cd33 を反映した No.5 の鏡面 (鏡面画像について赤の範囲: Cd33 内、青の範囲: Cd33 外)

図 3.54 について、鏡面画像の赤い範囲が Cd33 に入る光を反射しており、青い範囲が Cd33 に入らない部分である。また、曲率半径の値で青で囲ってあるものが 2f 法で最少となる位置、黒が Cd33 の最大光量となる位置、赤が D80 が最小となる位置である。この結果から、最初に鏡面内側が集光し、その後外側が集光していく様子が確認できる。これはセクション 3.3.7 で述べたような 2 つの焦点距離を持つ鏡の特徴を表している。

この2つのことなった焦点距離を持つ鏡について、モデルを作成し、シミュレーションを 行った。作成したモデルは全体が対辺間1.51 mの正六角形形状で、中心から直径1.12 mの円 の内側と外側で曲率半径が異なる。中心部の曲率半径57 m となっており、外側部分が58 m となっている、またこのモデルでは、鏡表面の法線の延長は必ず光軸と交わるようになって いる。以下の図3.55 にそのモデルのイメージを示す。このモデルを鏡面モデルAとし、Cd33 レイトレース結果を以下の図3.56、図3.57 に示す。

図 3.55: 内側 (黄色) と外側 (緑) で曲率半径が異なる鏡面モデル

球面モデル A のレイトレース結果、Cd33 が最大となる位置は 2 つの曲率半径 (57 m、58 m)の間の 57.45 m となった。曲率半径に対する Cd33 のプロットの形状は 56 m までは増加 していき、56 m から 57 m(一つ目の曲率半径:青線) にかけて一定となり、そこからさらに 57.45 m でピークを迎え、58 m(2 つ目の曲率半径:赤線) で減少してくという特徴的な形状 となった。

またこのモデルについてそれぞれ 57 m、58 mの曲率半径をガウシアン分布でばらつかせたものを鏡面モデル B として、こちらでも Cd33 レイトレースシミュレーションを行った。 使用したガウシアンは曲率半径 57 m に対して σ =0.15 m(要求が 57 m~58.4 mの間で3 種類であることから考慮)とし、曲率半径 58 m に対しては表面精度が悪いと仮定し、 σ =1 m(任意)とした。結果を図 3.58、図 3.59 に示す。 曲率半径にばらつきを持たせると、スポットは6 方向に延びる直線が見えるようになった。曲率半径に対する Cd33 のプロットは 56.5 m 辺りまで急激に増加し、それを過ぎると増加が緩やかになり、57.86 m のピークを超えるとまた急激に減少するという形状となった。この形状を、これまで測定した鏡の Cd33 プロット結果 (図 3.60)と比較すると、このモデルの形状とよく似た特徴を持つものが多くみられる(特に No.1、3、5、9、16、21、29)。これらの鏡は鏡面モデル B のような構造を持っていると考えられる。

多くの鏡でこの鏡面モデルBの構造が前セクション3,4,2 で述べた人の目によるバイアス で測られたため、PMD 法で求めた曲率半径が2f 法のものよりも全体的に長くなるというの 傾向が現れたのだと考えられる。

図 3.56: 鏡面モデル A の結果 (スポットと表面形状)

図 3.57: 鏡面モデル A の結果 (曲率半径に対する Cd33)

図 3.58: 鏡面モデルBの結果 (スポットと表面形状)

図 3.59: 鏡面モデルBの結果(曲率半径に対する Cd33)

図 3.60: 全て鏡に対する Cd33

第4章 まとめと今後

本研究では Cherenkov Telescope Array (CTA) 計画における大口径望遠鏡の分割鏡の集光 性能評価の研究として、従来の評価方法である 2f 法に加え、大量生産に向けた新しい評価方 法である Phase Measuring Deflectometry (PMD) 法の開発を行い、それぞれの方法で分割鏡 の評価を行った。

2f 法とは 2f(曲率半径=約56 m)の位置に光源と検出器を置き、鏡のスポット像を直接光で 捉えて評価する方法である。この装置を鏡の製造を依頼している三光精衡所に設置し、測定 を行った。この装置では検出器にスクリーンとデジタル一眼レフカメラを使用するため、測 定結果としてスポットの画像が得られる。この画像を解析することによって、LST 用分割鏡 の集光性能要求である D80 が 2f の位置で 33.2 mm 以下となっているかを評価する。評価方 法として、バックグラウンド処理を行った RAW 画像を使い、スポット光量の重心を求めて そこから放射方向に足し合わせていき、総光量を求め、D80 となる直径を求めるという方法 で評価を行った。その結果、分割鏡に対し D80 は 18.08±0.77 mm となった。

このように 2f 法について、測定結果から D80 を求めることが出来た。しかしこの方法で はまだ解析の結果の不安定さが大きい。そのため、今後はこの不安定さを抑えるような解析 方法の改善を行う。

一方で、PMD 法とはドイツのエアランゲン大学で開発された3次元形状測定方法で、液晶 スクリーンを使って測定対象の鏡面に位相模様を映し、正反射によって生じた像の鏡面形状 による変形を4台の CCD カメラでステレオ撮影した画像を解析することにより、鏡面形状、 法線を測定する方法である。この方法によって得られた鏡面情報から光線追跡シミュレーショ ンを行い、スポットサイズや焦点距離の評価を行う。この方法は測定範囲が複数のカメラ視 野の重ね合わせとスクリーンの大きさを調整することで、大型鏡でも測定が可能になる。ま た、測定作業は特定の位置に鏡を置き、写真を取るだけという単純なものであるため、測定 の効率化も狙える。本研究ではPMD 法装置を設計し、実際に宇宙線研究所内にて製作して 設置し、測定に必要な装置較正および鏡の測定、解析、装置の改善を行った。その結果、現 時点の PMD 装置は鏡面において 10 μm 程度の構造が測定できた。そして複数の鏡の測定し た結果、要求値の半分の大きさまでのスポットサイズの判別ができ、それぞれの鏡が要求を 満たしているかの判断が可能となった。

2f法と PMD 法の測定結果の比較を行ったところ、PMD 法の方が曲率半径が長くなり、ま た、その傾向はスポットサイズが大きいほど顕著となった。このことについて、PMD 法の システマチックエラーではなく、それぞれの測定の曲率半径決定の基準と鏡のある固有の形 状に原因があると考え、PMD 法の結果に Constant diameter(Cd) という新しいパラメータ を導入し、スポットの解析を行った。Constant Diameter(Cd) とはある鏡からの距離でのス ポットに対し、その総光量の重心からある直径の円の内側に入る光量を調べる。そして円に 入る光量が最も多くなる鏡からの距離をその鏡の焦点距離 (曲率半径) とする解析方法であ る。結果、Cd33(diameter=33 mm) で評価を行うとスポットサイズが大きいものほど曲率半 径が離れるという傾向が弱くなり、また、Cd16.5(diameter=16.5 mm) で評価を行うと 2f 法 の結果とほぼ近くなった。また、鏡のある固有の形状として中心と端で異なった曲率半径を 持つ鏡面モデルを作成し、Cd33 による評価のシミュレーションを行った結果、実測の結果 とよく似た結果が得られた。これらのことから、PMD 法と 2f 法の比較によって得られた誤 差は、PMD 法のシステマチックエラーではなく、それぞれの測定の曲率半径決定の基準と 中心と端で異なった曲率半径を持つ鏡の形状によるものと分かった。

PMD 法について、今後は評価装置として実用するために、測定における PMD 装置が持 つ真のシステマティックエラーを定量的に見積もる。この方法として、現在所持している直 径 30cm の光学望遠鏡用ガラス鏡を PMD 法で測定し、さらに PMD 法以外の確立された方 法で形状測定し、その結果の比較から、PMD 法の形状測定のシステマティックエラーを定 量的に求めることを検討している。

付 録 A 反射率位置依存性測定

生産された複数枚の 1.51 m 分割鏡について、スパッタリングコーティングの安定性など の調査のため、No.21~No.29 までの分割鏡の反射率の測定を行った。測定にはコニカミノ ルタ CM-2500d という測定器を使用し、分割鏡の図 A.1 のような位置を測定した。測定に使 用した波長は 370 nm となっている。これは大気を通り分割鏡に届くチェレンコフ光と PMT の感度との関係から、やや紫外寄りの青色の反射率が重要となってくるためである。測定結 果を図 A.2 に示す。

図 A.1: 分割鏡面の反射率測定位置

図 A.2: 各分割鏡の測定位置ごとの反射率とその平均のばらつき

No.26 の鏡について分散が大きくなってしまっているのは、鏡面の ① の位置にコーティン グの失敗で、黒くくすんだの跡があり、その場所の反射率の値が影響してしまっているため である。この鏡を除くと、全ての鏡の反射率は各分割鏡間で約 8%程度のばらつきがあるも のの、おおむね仕様を満たしていることが分かる。しかし、鏡個々で共通して ①、⑤ の位置が低くなる傾向が見られた。この位置依存性を測定するため、No.6 の鏡について要求の波長である 360 nm~590 nm の間を 10 nm 間隔で反射面全面を 10 cm ごとに 184 点測定した。結果を図 A.3 に示す。

図 A.3: No.6 における波長ごとの反射率の位置依存性。図において 85%以下はカットしている。

図A.3 から各波長において、鏡の左端 (AMC 用のカット部分) 周辺と右上の辺部分が、反 射率が比較的低く、中央が高いという傾向が見られた。この結果から、波長の大きさに依存 しない反射率の位置依存性があることが分かった。この原因として、スパッタリングの際に 鏡をある角度で固定し、一定方向に往復させてコーティングしていくため、鏡の往復方向と 垂直にある装置のコーティングのムラが増幅されるようにコーティングされてしまうためで あると考えられる。

付 録 B PMD 装置の使い方

カメラキャリブレーション

- 1. 実際に使う距離に焦点とF値で固定(ネジ止め)
- 2. ini ファイルの projecter ファイル内の内容を minbrightness=0 に変更
- 3.1 で決めた距離にテストボードを置き、10 パターンを softPMD で撮影
 - 10 パターン (正面、左右傾け、上下傾け)×(0,90°回転)=10
 - softPMD での撮影「Single Image」(シングルカメラのアイコン)でシングルカメ ラ撮影する。撮影した画像は bitmap ファイルでピュアな状態で保存(すべての チェックを消す)
- 「australis」、「grayscale」、「original」という3つのフォルダを作り、保存した画像 「original」フォルダ移動しを普通に開く(softPMD ではない)
 - (a) 画像が開いている状態で「b」キーを押すと converter が開ける。そこですべての 画像を gray scale に変換する。
 - (b) converter による gray scale への変更
 - (c) 「Add all」ですべての画像を選択する。下の空欄に選択された画像名がすべて 出る。
 - (d) 「Batch conversion setting」の「Advanced」アイコンをクリック、ウィンドウ中央 に書かれているチェック欄にある「convert grayscale」にチェックし「OK」する。
 - (e) 保存先を作った「grayscale」フォルダに指定し、[Start Batch] で変換が開始される。
- 5. 出来上がった画像すべてを「australis」フォルダにコピーする。そして、そのフォルダに「calib_need_file_for_newbord」フォルダ内にある NewBordLEXI.xyz、Bundle.xyz、NewBordLEXI eod.eod をコピーして持ってくる。
- 6. Australis を起動する。
- 7. 「New project」を選択し、「milimeters」を選択
- 8. 「Camera database」にある対応するカメラアイコン(cam0: stingray00に対応)を project1に持ってくる(左クリック押したままスライドさせる)。その後、Australis フォ ルダにプロジェクトを保存する
- 9. 3D Data を右クリックし import を選択し、以下のように読ませる。
 - 3D Data File \rightarrow NewBordLEXI.xyz
 - Driveback File \rightarrow Bundle.xyz

- EO Drive \rightarrow NewBordLEXI eod.eod
- project 内のカメラアイコン(「Camera database」から持ってきたもの)を右クリック、 「Set Image File Directory」を選択し、撮影して変換した画像が入っている australis ファイルを選択する
- 11. 画像を選択しドットに「3D Data file」のデータ対応した番号を付けていく(101~)。 以下のようなコマンドを利用する。
 - [Alt] + [M]: サーチウィンドウを開く
 - [shift] + [クリック] : 一列サーチ
 - [Alt] + [D]: 打たれた点(縦横1列程度)からDriveに対応したサーチ(必須)

画面上にある3つの数字は左から「打つ番号」「次に打つ番号との差(プラスする値、 100 なら101、201、301 となっていく)」「サーチするサークル(ドット)の大き」と なっている。

- 12. すべての画像に番号を打ち終わったらカメラアイコンをダブルクリックし、カメラデー タウィンドウを出す。Sensor Size、Pixel Size、c(焦点距離) にカメラの規格を入れる。 それ以外の値は0にする [Fix All] を選択し save→「OK」
- 13. 「Adjust」→「Resect All Project images」→「Run Bundle」→「Adjustment Controls」 →「Rejection Limit」を「fixed■(チェック有), Triangulation=300」に変更→「ok」→ 信号マークの左の「Go」をクリックすると計算される→終わったら再度 Adjustment Controls→Rejection Limit を [fixed■(チェック有), Triangulation=100]に変更→「Go」 →終わったら再度 Adjustment Controls で Rejection Limit を [fixed□(チェック無), Triangulation=100] に変更→Go→Accept]
- 14. カメラアイコンをダブルクリックし、カメラデータウィンドウを出すと先ほどの計算 結果が適応されている。より細かく計算するためにパラメーターの fix 条件を変える。 「k1」,「k2」,「k3」,「p1」,「p2」,「b1」,「b2」を fix して 13 の作業 →「p1」,「p2」, 「b1」,「b2」を fix して 13 の作業 →「b1」,「b2」を fix して 13 の作業 → すべてをフ リーパラメーターにして 13 の作業
- 15. カメラアイコンを右クリックして、「update camera database」→「はい」→計算結果 がソフトソフト内に書きこまれ、保存される。
- 16. soft-PMD内の「calibration」→「Import Australis camera」→「Australis Data Bacea」
 と「Locally Installed Camera」の対応するデータを選択する(例、stingray00→「Cam
 0 on channel 0」)→「Overwrite Sensor camera With Australis camera」→完了

スクリーンキャリブレーション

1. ini フォルダ内の projector ファイル内の「Error Parameters」欄の「MinBrightness」を 0.05 から0に変更(カメラキャリブレーションと同様)

- 2. soft-PMDを立ち上げ、「Engin」→「projecter」→「project bitmap」→dots.bmpファ イルを選択 → スクリーンにドットが投影される
- 3. キャリブレーションされたカメラでスクリーンを10パターン影する。
 - (中央、上、下、右、左)×(0,90°)=10 なるべくカメラの中央にスクリーンが映るようにする。これはカメラの端は歪みが 大きく、キャリブレーションしても補正しきれていない可能性があるためである。
- 4. カメラキャリブレーションと同様にして3つのフォルダとgrayscaleの画像を作る。
- 5. australis フォルダ内に DOTS_screen_mm.xyz、Bundle.xyz(スクリーン座標に対応し たもの、ほかのスクリーン calibration フォルダから持ってくる) を持ってくる。
- 6. Austlalisを起動。「Newproject」を立ち上げる。「Project」に使用したキャリブレーショ ンカメラを持ってくる。
- 7. 「project」内のカメラアイコンに撮影したスクリーンの画像を開き、以下のファイル をインポートし、カメラキャリブレーションと同様にしてドットに対応した番号を振 る。番号はDOTS_screen_mm.xyz内の情報を参考にする。
 - 3D data file \rightarrow DOTS_screen_mm.xyz
 - Driveback file \rightarrow Bundle.xyz
- 8. 番号をつけ終わったら、project内のカメラアイコンをダブルクリックし、パラメーター を「Fix All」にする。こうすることで、スクリーンによるドットのずれのみを検出で きる。
- 9.「resect all project images」→「run bundle」→「fix 300」→「fix 100」→「no fix 100」
 (カメラキャブレーションと同様の作業をカメラパラメータを all fix 状態で一回行うだけ)→「accept」→「Driveback file」のBundle.xyz ファイルが書き換えられる。
- 10. セーブし、Ausutralis は閉じる。
- 11. soft-PMDを立ち上げ、「calibration」→「calibrate screen」→ 作成した bundle.xyz を 選択 → ドット座標の元となる、dots.icf ファイルを選択 → ずっと「NO」を選択 → 中 心座標(407)を指定 → 中心から x 方向の最後(413)を指定(x ベクトルを決める) → 中心から y 方向の最後(707)を指定 → residual が出てくるので、OK(ズームして スクリーンショットでビットマップ保存)→ スクリーンキャリブレーション終了。

補足

soft-PMD→「diagnostic」→「export calibrate field」→「OK」→save しない→z 画像で全 画面選択プレーン引きをすると、スクリーンの歪みがどうなっているかが見れる(必要なら スクリーンショットで保存)。 ワールド座標キャリブレーション

- 1. カメラを CCD 台に設置し、視野を調整して固定する。
- ini ファイルの projector ファイル内の「Error Parameters」欄の MinBrightness を 0.05 から 0 に変更(カメラキャリブレーションと同様)
- 3. テストボードの中心(714)を設定したい装置の原点に対応させて地面に平行に置く。
- 4. 設置した CCD カメラでテストボードを個々にシングル撮影し bitmap で保存。
- これまでと同様に3つのフォルダ (australis ,grayscale ,original) を作成、grayscale 画 像を作る。australis ファイルに NewBordLEXI_shifted_cent714.xyz、 NewBordLEXI_eod_shifted_cent714.eod を持ってくる。その後 australis フォルダ内に cam0 から cam3 までのフォルダを作り、 その中にそれぞれ対応する画像を入れる。
- 6. Australisを立ち上げ、撮影したすべてのカメラ(0~3)をすべて project に持ってくる。
- 7. すべてのカメラにそれぞれ画像を読ませる。(cam~フォルダ)
- 3D Data File に NewBordLEXI_shifted_cent714.xyz をインポートし、さらに「set as」 で「Driver」、「Control」の両方をチェックする。
 EO Device に NewBordLEXI_eod_shifted_cent714.eod をインポートする。その後、 これまでと同様のドットへの番号付けを行う。
- 9. 番号付け後、「adjust」から「resect all project images」までのみ行うとフォルダ内に Project Resection.txt が作成される。決して「Run bundle」はしない。
- Soft-PMDを立ち上げ、「calibration」→「Import Australis Cameras」→「Cam~ on channel~」を選択し「Position…」を押す→「Resection file」→Australis で作成した Project_Resection.txtを選択→カメラ情報を順に読んでいく(0,1,2,3)対応するカメ ラ情報で「はい」を押す。それまでは「いいえ」を選択し読み飛ばしていく。
- 選択すると、Translation と Input by rotation augle に位置と角度の情報が入る。位置 については(Australis は mm 表記だが、soft-PMD は m 表記なので)「Divide by 1000」 を選択し、角度についてはそのまま Use angle をクリックし、それぞれを適応させて、 「overwrite」をクリックし、その後「close」を押す。これで各カメラで行うことで、カ メラ position 初期位置が soft-PMD 内に書き込まれる。
- 「calibration」→「Set Screen Position」→「translation」欄にスクリーンの座標を記 入する。この値は、原点からレーザー距離計などで測定する。(ほとんど変わらないの で、装置改良をするまではそのままの値でよい)→「Input by rotation angle」欄にス クリーンの設置した傾きを入れる(現時点では地面に垂直のため、0,0,0 が入っている) →「OK」。これでスクリーンの初期値が設定される。
- 13. ここまで設定し、いったん soft-PMD をシャットダウンする。するとその際に、カメラ 情報の書き換えを行うかを尋ねられるので、「YES」を選択。

- 再度 soft-PMD を立ち上げ、world calibration を行うのに必要な仮測定データを作る。 ini ファイルの projector ファイル内の「Error Parameters」欄の MinBrightness を 0 か ら 0.05 に変更(元に戻す)
- 15. 鏡の設置条件を9パターン変えながら、実際の撮影と同様に「stretch factor」1と20(今後変更の可能性あり)で「Grab Sequence」(複数カメラのアイコン)をクリックして4 台カメラ同時撮影を行い、.spmd ファイルで project を保存する。
 - 鏡の設置パターン普通、12時方向傾け、1.5時方向傾け、3時方向傾け、4.5時方 向傾け、6時方向傾け、7.5時方向傾け、9時方向傾け、10.5時方向傾け(計9パ ターン)
- 16. PMD フォルダ→ Calibration フォルダ→ OptimaizeCamPositions フォルダ内に world calibration 用のフォルダを作成、その中に Cam0、Cam1、Cam2、Cam3、フォルダを 作成し、前回フォルダ(例えば 20130621 フォルダ) から CalibrationParameter.ini を 持ってくる。(この ini ファイルはスクリーンを立てる前と後で内容が違うため、必ず 最新のもの(最前回のもの)を取ってくる)
- 17. Soft-PMD で先ほど撮影した9パターンの project を1つ開き、Master Camera でカメ ラを選択し、「screen」(スクリーンのアイコン。^S→アイコンの隣)を押し、各カメラ で撮影された有効鏡エリアの画像を出す。「NewROI」アイコンで範囲を選択し、この 画像を「[Ctrl] + [c]」(選択エリア外消し)、「[Ctrl] + [x]」(選択エリア内消し)など で有効エリアのエッジを消していく。(エッジは1ピクセルが切れている可能性がある ため、計算に使わない)
- 18. エリア選択が終わったら、先ほど作成した OptimaizeCamPositions フォルダ内の対応 する Cam フォルダに「Position[スペース] 番号 (0~8).xdt」という名前の XDT ファイ ルとして保存する。(名前を間違えない) この作業を各カメラ、各 project で行い、OptimaizeCamPositions フォルダ内の Cam0~3 フォルダ内に Position 0.xdt から Position 8.xdt までの画像データがそれぞれできたことになる。 (Position 0.xdt~Position 8.xdt)×(Cam0 Cam3)
- 19. ここまで作成、保存したら、一度 soft-PMD を閉じ(こうしないと World Calibration の計算結果が保存されないようである)、再度立ち上げて「Calibration」→「Optimize camera position…」→出てきたウィンドウの「session」の部分を先ほど作成した画像 データが入っているフォルダを選択して変える →Calibrate 欄の「Calibrate sphere」を チェックし曲率半径を記入する(凹:マイナス、凸:プラス)→「Calibrate」をクリッ ク → 設定した曲率半径を初期値にするか fix するかを聞かれるので、初期値として使 用する → 計算が始まる → 計算結果が良かった場合は「OK」→「Apply」→書き換え るか聞かれるので「イエス」。これで world Calibration が完了

測定方法

1. ini ファイルが使用するものか、また projector ファイル内の「Error Parameters」欄の MinBrightness が0.05 になっているか確認する。

- 2. 所定の位置に鏡を置く。(地面に印あり)
- 3. 実験室の電気を消す。
- soft-PMDを立ち上げ、鏡がカメラの有効視野に入りきっているか、またサチュレーションを起こしていないかを「Live Image」(ビデオカメラのようなのアイコン)確認する。 サチュレーションが起きていた場合は、右上の「Exp.」(Exposure)の値を下げる。これをすべてのカメラで行う。
- 「stretch factor」 を1(今後変更の可能性あり)にして「Grab sequence」で撮影。撮影後、「screen」(スクリーンのアイコン。^S→アイコンの隣)を使い、各カメラで正常に撮影できているかを確認する。
- 6.「stretch factor」を 20(今後変更の可能性あり)にして「Grab sequence」で撮影。撮影 後、「screen」(スクリーンのアイコン。^S→アイコンの隣)を使い、各カメラで正常に撮 影できているかを確認する。スクリーンが映りこんでいる場合はその部分を [Ctrl]+[x] などで消す。
- 7. ここまでのプロジェトを.spmd ファイルとして保存する。
- 保存した.spmd ファイルと同じフォルダ内に画像合成の実行ファイル 「Evaluate_fourCamera_v4_32bit.exe」 を持ってきて、起動する。指示に従い画像合成を行う。
- 9. 合成が完了すると、.spmdファイルと同名のフォルダが出来る。その中に4台のカメラ の視野が合成された鏡のデータ (surface.xdt、normals.xdt など) が入っている。
- 10. この新しくできたフォルダ内にレイトレースのための initial_values フォルダと実行 ファイル「PSF_v2_off&on.exe」を持ってきて、実行する。すると対応する ini ファイ ルと normals.xdt ファイルを聞かれるので、対応するものを選択する。
- 11. このフォルダ内にレイトレースの結果が bitmap として保存される。

補足 : mean curvature の求め方

- soft-PMDを立ち上げ、測定を行ったプロジェクトファイルである.spmd ファイルを開く。
- 「Select Camera」ウィンドウで「Master Camera」に任意のカメラ、「Stereo Slave Camera」そのカメラから最も遠い位置のカメラ (対角線上)をそれぞれ選択する。
- 「Calculate normals」 ($\stackrel{N}{\rightarrow}$ アイコン) をクリックし、ウィンドウを立ち上げる
- 「Calculate normals by iteration」欄の「Start X-Y-Z」の前2つ(X, Y)にともに-0.01 を入れ、「Integrator」で「2-path」を選択する。
- 「Calculate normals by Stereo Deflectometry」欄の「Z min-max」の値を-100~100 に する。そして「OK」を押す。計算後、より左側のアイコンが選択できるようになる。 (この「Calculate normals」での作業は捨てファイルを作る作業のため、ここで書いた 数値に意味はなく。すんなりと計算が終わるように簡単な値を入れている。)
- 「Surface (xyz)」(Sアイコン)と「normals」(Nアイコン)にそれぞれに画像合成で出 来た.xdt ファイルを読ませる。
- 「Integrate」(→アイコン)をクリックする。画面に surface 画像 (Select fixed point for integration) が出るので、計算始めの点 (ほぼ鏡の中心になるような)を選択 (クリック)し、「OK」(緑のチェック型のアイコン)を押す。するとその点の座標が表示されるので、「OK」を選択する。
- 「Select Integrator」ウィンドウが表示されるので、ここでは「RBF Interpolation」
 (2-path よりも細かく計算する計算方法)を選択する。
- 再度 surface 画像 (Select Integration ROI) が出て、計算範囲の指定を要求してくるの で、計算したいエリアを選択し、「OK」(緑のチェック型のアイコン)を押す。
- 以降出てくるウィンドウはすべて「OK」すると計算が開始する。
- ・計算終了後、「Calculate Curvature」(^C→ アイコン)を選択し、現時点ではパラメータに 変更がないので、このまま「OK」を選択する。計算完了後さらに左のアイコンが選択 できるようになる。
- 「Mean curvature」(Øアイコン)を選択すると mean curvature が得られる。

解析方法

soft-PMD 内で.xdt ファイルを開くと、理想球面フィットなど、データをいじることが出来る。よく使ういくつかのコマンドを示す。

- [Ctrl] + [p]
 「New ROI」で選択した範囲で余分なプレーン (定数) を引く。形状が相対値となる。
- [c]
 「New ROI」で選択した範囲でカラーバーを合わせる。
- 「Tool」→「Analyze」→「Spherical fit」
 形状に対し理想球面フィッティングを行う
- 「Tool」→「Arithmetic」→「Subtract Sphere」
 形状からフィットした理想球面を引く。理想球面フィット後に行う。
- 「Tool」→「Analyze」→「Statistics」
 「New ROI」で選択した範囲の最大値、最少値、分散などの情報が見れる。

付 録 C 解析プログラムのソースコード

2f 法の解析に作成したした5つプログラムのソースコードを示す。ソースコードは総括す るシェルスクリプト1つと計算プログラムが4つである。解析にはさらに ROOT、dcraw、 ImageMagickの convert 機能、ds9(絵描きソフト)が必要となる。解析は統括するシェルスク リプト (spotsize_d80_nomlz_bg_vr2.sh)を実行することによって、他の4つのプログラム に加え、dcrawと ImageMagickの convert 機能、ds9 が解析に対応した順番で自動的に実行 されていく。実行されていく順番は以下のとおりである。

- dcraw
- ImageMagick の convert 機能
- ds9
- raw output blue nomlz bg.py(データの吸出しとバックグラウンド処理,python)
- raw fit xy gauss nomlz bg vr2.C (スポット画像の書き出し、ROOTのマクロ)
- raw write rw gauss nomlz bg vr2.C (D80の計算、C++)
- raw write dw vs r nomlz bg vr2.C (D80の書き出し、ROOTのマクロ)

解析の流れ

 $\$ chmod +x spotsize _d80 _nomlz bg _vr2.sh

\$./spotsize_d80_nomlz_bg_vr2.sh スポット画像名.CR2 BGD 画像名.CR2
 (画像が FITS ファイルに変換され、ds9 上で描かれたスポット画像が出る。ここで大まかなスポットの重心座標を調べる。)
 (ds9 を閉じると計算に必要なスポットの重心の初期値を以下のように聞かれるので,先ほ

ど調べた値を打ち込む。) please input center X(odd number)=重心の x 座標の初期値

please input center y(odd number)=重心の y 座標の初期値

(以下は自動でプログラムが実行されていき、最終的に D80 の値が表示される) D80=~(pixel)

```
spotsize d80 nomlz bg vr2.sh(統括するシェルスクリプト)
```

```
#!/bin/tcsh
if (\$\#argv != 2) then
       echo "please define a filename"
       exit(-1)
else
echo "spot Datafile:" $argv[1]
echo "backgraund Datafile:" $argv[2]
endif
if !(-e \operatorname{sargv}[1]) then
  echo "no such Datafile"
  exit(-1)
endif
if !(-e \operatorname{\$argv}[2]) then
  echo "no such Datafile"
  exit(-1)
endif
rm -rf spot fits pic.fits
rm -rf spot fits pic bg.fits
dcraw -c -D -4 $argv[1] | convert - spot_fits_pic.fits
dcraw -c -D -4 $argv[2] | convert - spot fits pic bg.fits
echo "Done. converted to fits file"
ds9 spot fits pic.fits
echo "Area defined"
python raw output blue nomlz bg.py
echo "output OK "
root -l raw fit xy gauss nomlz bg vr2.C«EOF
p.
EOF
echo "picture OK"
g++ raw write rw gauss nomlz bg vr2.C -lm
./a.out
root -l raw write dw vs r nomlz bg vr2.C « EOF
p.
EOF
```

```
raw output blue nomlz bg.py(データの吸出しとバックグラウンド処理,python)
```

```
\#/usr/bin/env python
\# imports
import pyfits #ROOT, os
data file="spot fits pic.fits"
data file 2="spot fits pic bg.fits"
f=pyfits.open(data file)
f2=pyfits.open(data file 2)
imagedata id=0
image data=f[imagedata id].data
image data 2=f2[imagedata id].data
\# npx = f[magedata id].header["NAXIS1"]
npy=f[imagedata id].header["NAXIS2"]
def getReal(val):
    return val * + 65535
sx=0
sv=0
f3=open ("spot pic nomlz.dat","w")
f4=open ("fit data pic nomlz.dat","w")
cx=input("please input center X(odd number)=")
cy=input("please input center y(odd number)=")
strx = cx-1600
edx = cx + 1602
stry=cy-1600
edy=cy+1602
mxnum=0
cnt=0
snom=0
nomlz=0
print "Filling to a text file: spot.dat....."
for y in range(stry,edy,2):
     for x in range(strx,(strx+402),2):
         snom=snom+((image data[y][x]-pow(2,15))/(image data 2[y][x]-pow(2,15)))
        cnt=cnt+1
    for x in range((edx-402), edx, 2):
         snom=snom+((image data[y][x]-pow(2,15))/(image data 2[y][x]-pow(2,15)))
         cnt=cnt+1
```

```
for x in range((strx+404), (edx-402), 2):
     for y in range(stry,(stry+402),2):
         snom=snom+((image data[y][x]-pow(2,15))/(image data 2[y][x]-pow(2,15)))
         cnt=cnt+1
    for y in range((edy-402), edy, 2):
         snom=snom+((image data[y][x]-pow(2,15))/(image data 2[y][x]-pow(2,15)))
         cnt=cnt+1
nomlz=snom/cnt
print "nomalize number="
print nomlz
for y in range(stry,edy,2):
    for x in range(strx, edx, 2):
         w=(image data[y][x]-pow(2,15))-(nomlz*(image data 2[y][x]-pow(2,15)))
         f3.write ("%.5f %.5f %.5f \n" % (x-sx,y-sy,w))
         sx = sx + 1
         mxnum=mxnum+1
    sy=sy+1
    sx=0
print nomlz
endx = strx + ((edx - strx - 2)/2)
endy=stry+((edy-stry-2)/2)
f4.write("%d %d %d %d %d %.5f" % (strx,endx,stry,endy,mxnum,nomlz))
```

```
raw fit xy gauss nomlz bg vr2.C (スポット画像の書き出し、ROOTのマクロ)
void raw fit xy gauss nomlz bg vr2()
ł
gROOT->SetStyle("Plain");
int csx,csy,cex,cey,n,nomlz;
ifstream data2("fit data pic nomlz.dat");
data2 » csx » cex » csy » cey » n » nomlz;
const int maxc=n;
data2.close();
TH2F *h1 = new TH2F("h1", "his", cex-csx, csx, cex, cey-csy, csy, cey);
ifstream data("spot pic nomlz.dat");
ofstream fout("fit data pic nomlz 2.dat");
double x[maxc],y[maxc],z[maxc];
int k=0;
int a=0;
cout « "reading the data....." « endl;
while (k < maxc)
data » x[k]  » y[k]  » z[k];
h1->Fill(x[k],y[k],z[k]);
k = k + 1;
}
data.close();
cout « "ok" « endl;
TCanvas *c1 = new TCanvas("c1", "c1", 800, 800);
c1->Divide(2,2);
  c1->cd(1);
TH1D *prjx = h1 \rightarrow ProjectionX();
prjx->Draw();
cout « "Projection X ok" « endl;
c1->cd(2);
TH1D *prjy = h1 \rightarrow ProjectionY();
prjy->Draw();
```

```
cout«"Projection y ok" « endl;
c1->cd(3);
TH2F *hnew = (TH2F^*)h1->Clone();
hnew->SetName("h2");
gStyle->SetPalette(1);
// h2->SetMaximum(10);
// h2->SetMinimum(-10);
h2->Draw("colz");
cout « "X Y picture ok" « endl;
c1->cd(4);
fout « "start_X," « " " « "end_X," « " " « "start_Y," « " " « "end_Y," « " " «
"all_data_number" « " " « "bg_normalize_number" « ".\n" « csx « " " « cex « " "
« csy « " " « cey « " " « maxc « " " « nomlz « ".\n";
h1->Draw("surf2z");
c1->SaveAs("spot_nomlz_bg.jpg");
c1->SaveAs("spot_nomlz_bg.png");
gStyle->SetOptFit();
gStyle->SetOptStat(0);
fout.close();
}
```

```
raw write rw gauss nomlz bg vr2.C (D80の計算、C++)
\#include<iostream>
\#include < fstream >
\#include<cmath>
\#include<cstdlib>
#include<string.h>
using namespace std; main()
ł
int rcmax=750;// max R (pixel) (R100)
double cx,cy,rc,r2,nomlz;
double wsam, bfwsam, of wsam, R100, R80, r80;
int n=0;
int a;
int stx,edx,sty,edy;
int t=0;
string tab;
ofstream fout("dW vs r G pic nomlz.dat");
ifstream fin1("fit data pic nomlz 2.dat");
while (t < 6)
fin1 \gg tab;
t = t + 1;
}
fin1 » stx » edx » sty » edy » a » nomlz;
fin1.close();
bfwsam=0;
wsam=0;
const int all=a;
//all data number
const int aln=2570000;
static double x[aln];
static double y[aln];
static double w[aln];
double xm=0,ym=0,sxm=0,sym=0,wgs=0;
```

```
//data input and center of gravity point
cout«"calculating center of gravity...."«".\n";
ifstream fin2("spot pic nomlz.dat");
while (n < all)
fin2 \gg x[n] \gg y[n] \gg w[n];
xm = x[n] * w[n];
ym=y[n]*w[n];
sxm=sxm+xm;
sym=sym+ym;
wgs=wgs+w[n];
n=n+1;
}
fin2.close();
n = 0;
cx=sxm/wgs;
cy=sym/wgs;
cout \ll "ok" \ll ". n";
//R100
cout«"calculating d80...."«".\n";
rc=rcmax;
for(n=0;n<=all;n++)
r2=((x[n]-cx)*(x[n]-cx))+((y[n]-cy)*(y[n]-cy));
if((rc*rc)>=r2){
wsam = wsam + w[n];
}
}
R100=wsam;
R80=wsam*0.8;
wsam=0;
n=0;
//R80
for(rc=0;rc<rcmax;rc++){</pre>
// \operatorname{cout} \ll \operatorname{rc} \ll ". \n";
for(n=0;n<=all;n++)
r2=((x[n]-cx)*(x[n]-cx))+((y[n]-cy)*(y[n]-cy));
if((rc*rc) > = r2){
wsam = wsam + w[n];
}
}
if(wsam <= R80){
r80=rc;
```

```
} fout « rc « " " « wsam-bfwsam « ".\n"; bfwsam=wsam; wsam=0; n=0; }
```

```
ofstream fout2("fit_data_pic_nomlz_3.dat");
fout2 « "start_X," « " " « "end_X," « " " « "start_Y," « " " « "end_Y," « " " « "cen-
ter_X," « " " « "center_Y," « " " « "all_data_number," « " " « "bg_normalize_number"
 « " " « "R100," « " " « "R100_intesity," « " " « "d80," « " " « "d80_intesity" « ".\n" «
 stx « " " « edx « " " « sty « " " « edy « " " « cx « " " « cy « " " « a « " " « nomlz « " " «
 rcmax « " " « R100 « " " « r80*2 « " " « R80;
```

```
cout «".\n" « "D80=" « r80*2 « "(pixel)" « ".\n" « ".\n"; fout2.close(); cout « "end3" « ".\n"; }
```

```
raw_write_dw_vs_r_nomlz_bg_vr2.C (D80の書き出し、ROOTのマクロ)
void raw write dw vs r nomlz bg vr2()
ł
gROOT->SetStyle("Plain");
//max R (pixel)
const Int t nbin=751;
TCanvas *c1 = new TCanvas("c1", "c1", 900, 800);
Int t u=0,r80,d80;
Double t sted;
string tab;
ifstream fida("fit data pic nomlz 3.dat");
while (u < 12)
fida » tab;
u=u+1;
}
u = 0;
for(u=0;u<10;u++){
fida \gg sted;
}
fida \gg d80;
ifstream data("dW vs r G pic nomlz.dat");
Double ty[nbin];
Double t x[nbin];
Double t x[nbin];
Double ty[nbin];
Double t x[nbin];
Int t k=1;
Int t a=0;
Int t zry;
r80 = d80/2;
TGraph *gr1 = new TGraph(nbin, x, y);
TLine *lin1 = new TLine(0,0,nbin,0);
TLine *lin2 = new TLine(r80,0,r80,1000000);
data \gg x[0] \gg y[0];
```

```
gr1\text{-}{>}SetPoint(0,x[0],y[0]);
while(!data.eof()){
if(data.eof()){
}else{
data \gg x[k] \gg y[k];
gr1\text{-}{>}SetPoint(k,\!x[k],\!y[k]);
k = k + 1;
}
}
gr1->SetMarkerStyle(7);
gr1->SetMarkerColor();
lin1->SetLineColor(4);
lin2->SetLineColor(2);
lin1->SetLineWidth(5);
//lin2->SetLineWidth(5);
lin1->SetLineStyle(2);
//lin2->SetLineStyle(2);
gStyle->SetOptStat(0);
gr1->Draw("AP");
lin1->Draw("same");
lin2->Draw("same");
c1->SaveAs("dW_vs_r_G_nomlz.eps");
c1->SaveAs("dW_vs_r_G_nomlz.png");
gStyle->SetOptFit();
cout « "n" « "Blue line : y=0" « ".\n" « "Red iine : r80(pixel)" « ".\n" « ".\n";
}
```

PMD 法解析のため作成したレイトレースプログラムを以下に示す。このプログラムには input.dat ファイルので各点で3次元座標と法線情報の6つの情報が必要である。

```
raytrace_some_D80.C(ROOT のマクロ)
```

```
void raytrace some D80()
{
gROOT->SetStyle("Plain");
//set parameter
//roop number
const int con=2;
//total deta
const int j=480000;
//start raytrae R (m)
double d=56.39;
//slivde dr(m)
const double srys=0.25;
//x,y area
int stx, sty, edx, edy, arx, ary;
stx = 140;
edx = 220;
sty = -70;
edy=10;
arx=edx-stx;
ary=edy-sty;
ifstream finc("input cord.dat");
ofstream fout2("output.dat");
// \text{ const int cut} = (\text{con}/2);
double r,sita=0;
int i,max;
double cx,cy;
double x[j], y[j], z[j], vx[j], vy[j], vz[j];
double avvx=0,avvy=0,avvz=0;
double sina,cosa,sinb,cosb,sx,sy,sz,covsx[j],covsy[j],sumcsx=0,sumcsy=0;
double gx,gy,wsam,rc,r2,re;
double tvx=0,tvy=0,tvz=0;
double litx, lity, litz, litvy, litvy, litvz, refvy, refvy, refvz, t;
int l=0,roop=0,all=0;
TH2F *hi[con];
TH2F *h[con];
```

```
TCanvas *c1 = new TCanvas("c1", "c1", 1600, 800);
```

```
c1->Divide(5,2);
// c1->Divide(cut,3);
tvx=vx[l]+tvx;
tvy=vy[l]+tvy;
tvz=vz[l]+tvz;
l = l + 1;
while(!finc.eof()){
tvx=vx[l]+tvx;
tvy=vy[l]+tvy;
tvz=vz[l]+tvz;
l = l + 1;
}
\operatorname{cout} \ll l \ll " " \ll \operatorname{vx}[l] \ll " " \ll \operatorname{vy}[l] \ll " " \ll \operatorname{vz}[l] \ll ". \ n " \ll \operatorname{tvx} \ll " " \ll \operatorname{tvy} \ll " " \ll \operatorname{tvz} \ll ". \ n ";
tvx = tvx - vx[l] - vx[(l-1)];
tvy=tvy-vy[l]-vy[(l-1)];
tvz = tvz - vz[l] - vz[(l-1)];
l=l-2;
cout « l « " " « vx[l] « " " « vy[l] « " " « vz[l] « ".\n " « tvx « " " « tvy « " " « tvz « ".\n";
if((tvx/l) < 0)
avvx = -sqrt(((tvx/l)*(tvx/l))/(((tvx/l)*(tvx/l))+((tvy/l)*(tvy/l))+((tvz/l)*(tvz/l))));
}else{
avvx = sqrt(((tvx/l)*(tvx/l))/(((tvx/l)*(tvx/l))+((tvy/l)*(tvy/l))+((tvz/l)*(tvz/l))));
}
if((tvy/l) < 0)
avvy = -sqrt(((tvy/l)*(tvy/l))/(((tvx/l)*(tvx/l))+((tvy/l)*(tvy/l))+((tvz/l)*(tvz/l)));
}else{
avvy=sqrt(((tvy/l)*(tvy/l))/(((tvx/l)*(tvx/l))+((tvy/l)*(tvy/l))+((tvz/l)*(tvz/l)));
}
if((tvz/l)<0)
avvz = -sqrt(((tvz/l)*(tvz/l))/(((tvx/l)*(tvx/l))+((tvy/l)*(tvy/l))+((tvz/l)*(tvz/l)));
}else{
avvz = \operatorname{sqrt}(((tvz/l)^*(tvz/l))/(((tvx/l)^*(tvx/l)) + ((tvy/l)^*(tvy/l)) + ((tvz/l)^*(tvz/l))));
}
max=l;
l=0:
finc.close();
```

```
cosa=avvz/(sqrt((avvy*avvy)+(avvz*avvz)));
sina = sqrt(1 - (cosa * cosa));
cosb=avvz/(sqrt((avvx*avvx)+(avvz*avvz)));
sinb=sqrt(1-(cosb*cosb));
while(roop<con){
h[roop] = new TH2F(Form("h%d",roop),Form("%d",roop),arx,stx,edx,ary,sty,edy);
litx=avvx*d;
lity=avvy*d;
litz=avvz*d;
while (l < max)
litvx=x[l]-litx;
litvy=y[l]-lity;
litvz=z[l]-litz;
refvx = litvx - (2^*vx[l]^*((vx[l]^*litvx) + (vy[l]^*litvy) + (vz[l]^*litvz)));
refvy=litvy-(2^*vy[l]^*((vx[l]^*litvx)+(vy[l]^*litvy)+(vz[l]^*litvz)));
refvz = litvz - (2^*vz[l]^*((vx[l]^*litvx) + (vy[l]^*litvy) + (vz[l]^*litvz)));
t = ((d + (x[l]*avvx) + (y[l]*avvy) + (z[l]*avvz))) / ((avvx*refvx) + (avvy*refvy) + (avvz*refvz));
sx = (x[l] + (t^*refvx))^*1000;
sy=(v[l]+(t*refvy))*1000;
sz = (z[l] + (t*refvz))*1000;
covsx[l] = (sx^*cosb) + (sz^*sinb) - litx^*1000;
covsy[l] = (sx*sina*sinb) + (sy*cosa*cosb) + (sz*((-sina)*cosb)) - lity*1000;
sumcsx=sumcsx+covsx[l];
sumcsy=sumcsy+covsy[l];
h[roop]->Fill(covsx[l],covsy[l]);
if(l > 0){
int chik=1%400000;
if(chik = = 0){
cout « "ok1" « ".n";
}
}
l = l + 1;
}
```

```
gx=sumcsx/max;
gy=sumcsy/max;
all=max*0.8;
cout « l « ".n";
l = 0;
rc=0;
while (wsam < = all)
wsam=0;
r2=((covsx[l]-gx)*(covsx[l]-gx))+((covsy[l]-gx)*(covsy[l]-gx));
if((rc*rc) > = r2)
wsam=wsam+1;
}
while (l < max)
r2=((covsx[l]-gx)*(covsx[l]-gx))+((covsy[l]-gy)*(covsy[l]-gy));
if((rc*rc) > = r2)
wsam=wsam+1;
}
l = l + 1;
}
re=rc;
cout « rc « " " « wsam « ".n";
rc = rc + 0.1;
l=0:
}
hi[roop] = new TH2F(Form("hi%d",roop),Form("hi%d",roop),arx,stx,edx,ary,sty,edy);
cout « "ok2" « ".n";
for(i=1;i<=1000;i++)
cx=gx+re*cos(sita);
cy=gy+re*sin(sita);
sita=sita+(2*TMath::Pi())/1000;
hi[roop]->Fill(cx,cy);
}
fout2 « roop « " " « d « " " « "d80=" « re^{2} « ".\n";
c1->cd(roop+1);
gStyle->SetPalette(1);
// h1->SetMaximum(0.05);
// h1->SetMinimum(-0.05);
```

```
h[roop]->Draw("colz");
hi[roop]->Draw("same");
roop=roop+1;
d=d+srys;
l=0;
litx=0;
lity=0;
litz=0;
litvx=0;
litvy=0;
litvz=0;
sx=0;
sy=0;
sz=0;
t=0;
refvx=0;
refvy=0;
refvz=0;
cx=0;
cy=0;
sita=0;
i=1;
sumcsx=0;
sumcsy=0;
wsam=0;
re=0;
rc=0;
cout « roop « "ok" « ".n";
}
}
```

謝辞

本研究にあたり、多くの方々のご指導、ご協力に深く感謝いたします。指導教官の吉田龍 生教授には基礎的な宇宙物理から本論文のテーマである開発、解析にいたるまでのすべてに 対しご指導いただき、誠ありがとうございます。副指導教官の片桐秀明准教授には研究に関 して様々なご指摘、ご指導頂きましたことを感謝いたします。柳田昭平名誉教授にもゼミ等 でご指導頂きましたことを感謝いたします。

研究室の先輩であり、CTA-Japan MIR グループの先輩である加賀谷美香さんには様々な 点でご指導いただき、また些細な質問でさえ、丁寧に教えてくださりまして、誠にありがと うございます。同学年であり同研究グループである田中駿也君には研究の様々な相談を聞い てくださったことに感謝いたします。同研究室の杉重実君、田中洋輔君、その他研究室の皆 様のおかげで研究生活をより充実したものにすることが出来ましたことを感謝いたします。

東京大学宇宙線研究所の手嶋政廣教授、林田将明助教、中嶋大輔特任助教にはPMD法装置の開発から測定、改良にいたるまで、様々なご指導をいただき、誠にありがとうございます。また、齋藤浩二様、荻野桃子さん、小島拓実君、佐々木浩人君、他宇宙線研究所の皆様にはPMD 装置の製作や測定、改良の際に御協力いただけましたことを感謝いたします。

CTA-Japan MIR グループの奥村曉助教には 2f 法の解析や画像解析についてご指導いただ き、誠にありがとうございます。また、千川道幸教授には本研究にご協力いただきましたこ とを感謝いたします。野田浩司様には研究内容についてご指導ありがとうございます。他、 CTA-Japan MIR グループの皆様には研究機関する様々なご助言頂きましたことを感謝いた します。また、CTA-Japan の皆様にも様々なご指導頂きましたことを感謝いたします。

最後にここまで研究生活を支えて頂きました家族と地元の友人たち、そして最初の測定か らキャリブレーションにいたるまで、ともに頑張ってきた LST 用試作ミラーである、愛称 Standard Mirror に心より感謝いたします。

参考文献

- [1] 田島宏康, 天文・天体物理若手夏の学校, 2013, 「Unveiling Origin of Galactic Cosmic Rays」
- [2] 槙野文命, 2012, 『宇宙放射線の観測』
- [3] Claus Grupen, 2009, 『宇宙素粒子物理学』, Springer
- [4] 小田稔・西村純・桜井邦朋, 1983, 『宇宙線物理学』, 朝倉書籍
- [5] 井上一・小山勝二・高橋忠幸・水本好彦, 2008, 『シリーズ 現代の天文学 17 宇宙観測 Ⅲ 高エネルギー天文学』 日本評論社
- [6] Trevor Weekes, 2003, 『Very High Energy Gamma-Ray Astronomy』, Institute of Physics
- [7] 大石理子, 2002, 修士論文「解像型チェレンコフ望遠鏡光学系の性能評価」, 東京大学
- [8] A. Gadola, 2013, 『Towards the first imaging atmospheric cherenkov telescope camera with continuous signal digitization』, University of Zurich
- [9] CTA-Japan コンソーシアム, 2010, 『Cherenkov Telescope Array 計画』
- [10] CTA-All, 2010, Design Concepts for the Cherenkov Telescope Aray CTA
- [11] 小山勝二・嶺重慎, 2007, 『シリーズ 現代の天文学 8 ブラックホールと高エネルギー 現象』, 本評論社
- [12] 観山正見・野本憲一・二間瀬敏史, 2008, 『シリーズ 現代の天文学 12 天体宇物理学の 基礎 Ⅱ 』, 日本評論社
- [13] 黒田和典, 2011, 修士論文「次世代超高エネルギーガンマ線天文台 CTA の大口径望遠鏡 用ライトガイドの形状最適化」, 茨城大学
- [14] 佐々木美佳, 2011, 修士論文「次世代ガンマ線天文台 CTA のカメラに用いるアナログメ モリ DRS4 チップの特性評価」, 茨城大学
- [15] 梅原克典, 2012, 修士論文「次世代 TeV ガンマ線天文台 CTA 用プリアンプの性能評価 及び SiTCP を用いたガンマ線カメラγI(ガンマアイ)用読み出しシステムの開発」, 茨城大学
- [16] 加賀谷美香, 2012, 修士論文「次世代超高エネルギーガンマ線天文台 CTA の分割鏡の耐 候性評価およびコンプトン型ガンマ線カメラ γI(ガンマアイ)の基礎開発」, 茨城大学

- [17] 坂本由起子, 2005, 修士論文「次世代大気チェレンコフ望遠鏡のための基礎研究」, 東京 大学
- [18] 奥村曉, 2012, 「デジタルー眼レフを用いた RAW 画像撮影による画像データ解析入門」
- [19] 野坂健一郎・荒木秀和・中原智治, 2009, 「位相シフト法インライン3次元外観検査シス テム」
- [20] 津留宏介・村井俊治, 2011,『デジタル写真測量の基礎』, 社団法人日本測量協会
- [21] 永田信一, 2002, 『図解 レンズがわかる本』, 日本実業出版
- [22] 「光学のすすめ」編集委員会, 1997, 『光学のすすめ』, オプトロニクス社
- [23] Markus C. Knauer, Jürgen Kaminski, Gerd Häusler, 2004, 「Phase Measuring Deflectometry: a new approach to measure specular free-form surfaces」
- [24] 山本将之・殿岡雅仁・ 大谷幸利・吉澤徹, 1998, 「格子パターン投影法を用いた反射物 体の表面形状計測」
- [25] A. Schulz, F. Stinzing, C. Stegmann, C. Faber, R. Krobot, E. Olesch, G. Häusler, 2011, [Updates on mirror test facility in Erlangen]
- [26] 中内伸光 2005 『じっくり学ぶ曲線と曲面-微分幾何学初歩-』 共立出版
- [27] 「DCRAW を使ってみる -2-オプションの解説」 http://kokupsy.jpn.org/rawtherapee/dcraw
- [28] コニカミノルタ 『CM-2600d/CM-2500d 仕様』 http://www.konicaminolta.jp/instruments/products/color/cm2600d/spec.html