CTA報告186: CTA大口径望遠鏡のための SiPMカメラの開発

橋山和明^A, 猪目祐介^A, 岩村由樹^A, 大岡秀行^A, 岡知彦^B, 岡崎奈緒^A, 奥村曉^{C, D}, 折戸玲子^E, 片桐秀明^F, 櫛田淳子^G, 窪秀利^B, 郡司修一^H, 齋藤隆之^A, 櫻井駿介^A, 佐々木寅旭^I, 砂田裕志^I, 高橋光成^A, 立石大^I, 田中真伸^J, 手嶋政廣^{A, K}, 寺内健太^B, 寺田幸功^I, 門叶冬樹^H, 中森健之^H, 西嶋恭司^G, 野上優人^F, 野崎誠也^B, 野田浩司^A, Daniel Mazin^{A, K}, Daniela Hadasch^A, 山本常夏^L, 吉田龍生^F,

他 CTA-Japan consourtium

<u>東大宇宙線研</u>4,京大理^B,名大ISEE^C,名大KMI^D,徳島大理工^E,茨城大理^F,東海大理^G,山形大理^H, 埼玉大理^I, KEK素核研^J,マックスプランク物理^K,甲南大理工^L

- ガンマ線と地球大気との相互作用の過程で生じるチェレンコフ光を観測
 - ✓ 焦点面光検出器(カメラ)で撮像し,ガンマ線の間接観測を行う
 - ✓ 感度はガンマ線とハドロンの弁別性能にも依存する
 - → ピクセルの細分化によって弁別性能が向上 = LSTの感度向上
- ・CTA大口径望遠鏡 (LST)
 - CTAの中で口径が最大の望遠鏡
 - カメラは1855本の光電子増倍管(PMT)で構成される
 - ⇒ カメラ素子をPMTからSiPMに変える

Credit: G. Pérez, IAC, SMM

物理学会 2021年秋季大会

LSTのカメラ素子のSiPM化

(1) 光電子増倍率 (ゲイン)

- 印加電圧と電荷の関係を調べる

(2) 降伏電圧

- アバランシェ増倍を起こし始める電圧
- ゲインの超過電圧依存性から推定する
 - ✓ 超過電圧 = 印加電圧 降伏電圧

(1), (2) はSiPMの動作確認として行う

カメラ素子のSiPM化の研究において

(3) 信号の波形整形

- 波形整形回路により~3 nsのパルス幅を目指す
- SiPMの出力波形はそのままではLSTに不適
 - ✓ 素早い立ち上がりの後,数百nsで減衰
 - ✓ チェレンコフ光と夜光を弁別不可

(4) 電荷分解能

- 1 p.e.の電荷分布の揺らぎとして定義
 - ✓ 高電荷分解能は検出光子数の推定値の統計誤差を減らす

(5) **OCT**

- OCTの超過電圧依存性を調べる
 - ✓ 検出光子数の分布がポアソン分布からずれるため, 電荷分 解能を補正する必要がある

(6) 信号合成

- 信号合成時の電荷分解能を評価する
- SiPMは素子サイズが小さい
 - ✓ PMTカメラの1画素をカバーできない
 - ✓ 信号合成により1画素分の信号にする必要がある

2021/9/14

測定のセットアップ

・測定系

- 試験基板
 - ✓ SiPMの信号を読み出すための基板
 - ✓ 1チャンネル読み出し,2チャンネルおよび4チャンネル での信号合成が可能
- 他の外部回路
 - ✓ 波形整形回路 → Pole Zero Cancellation (PZC)
 - ✓ 増幅回路 → アンプ (OPA855DSGEVM, 27倍増幅)

試験基板での測定結果①

(1) ゲインの電圧依存性

- 約39.5 V以上でゲインは1次の関係となった
- 42.0 Vでのゲインは(2.33±0.10)×10⁵となった

(2) 降伏電圧

降伏電圧は39.50±0.04 Vと推定された

測定した12チャンネルは問題なく動作した

ゲインの揺らぎ: ~4.3%

降伏電圧の揺らぎ:~0.1%

SiPMの平均出力波形	平均電荷の印加電圧依存性	チャンクル	降伏雷圧	チャンクル	降伏雷圧
Average Curve ch-D1	HV-Gain Curve ch-D1	ノトノイル	件八电工	ノドノイル	件八电仁
3.5 積分区間 44.0 V 0.1 43.5 V 43.0 V 0.1	0.35	A2	39.50	C2	39.55
$3.0 - 42.5 \vee 0.1 - 42.0 \vee - 42.0 \vee 0.1 - 42.5 \vee 0.1 - 42.0 \vee 0.1 \vee$	0.25	A3	39.44	C3	39.52
1 2.0 数百nsで 40.5 V 40.0 V 9 0.2	0.20	B1	39.44	C4	39.52
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.15	B2	39.55	D1	39.48
0.5	0.05 ゲインは超過電圧	B3	39.48	D2	39.55
0.0 250 500 750 1000 0.0	0.00 38 40 42 44 38 40 42 44	B4	39.54	D3	39.48
Time [ns]	Reverse Voltage [V]				

2021/9/14

物理学会 2021年秋季大会

2021/9/14

物理学会 2021年秋季大会

試験基板での測定結果3

____/ I

• 目的: PMTとSiPMの性能比較のため, SiPMの基礎特性を測定する

•	測定結果 動作確認のための測定	特に重要な測定項目
	 (1) ゲインの電圧依存性 超過電圧に対して1次の関係になった 印加電圧42.0 Vでのゲインは(2.33±0.10)×10⁵ (2) 降伏電圧 降伏電圧は39.50±0.04 Vと推定された 別定した12チャンネルは問題なく動作した ゲインの揺らぎ: ~4.3%, 降伏電圧の揺らぎ: ~0.1% 	 (3) 信号の波形整形 - PZCによって信号のFWHMを約1.8 nsに短縮 ★ LSTの要求値は~3 ns (4) 電荷分解能 - 1チャンネル測定時: OCT補正後の電荷分解能: σ_{eff} = 0.28 p.e. (5) OCTの電圧依存性
•	 今後の展望 4チャンネルでの信号合成 アフターパルスの測定 降伏電圧やゲインの温度依存性の測定 PMTとの性能比較 	 超過電圧に対して1次の関係 超過電圧4.0 VでのOCT発生確率は約5.6% (6) 信号の合成 2チャンネル合成時: OCT補正後の電荷分解能: σ_{eff} = 0.31 p.e. 4チャンネル合成時: 測定中 2チャンネル合成時: 測定中 2チャンネル合成までの電荷分解能は PMTの電荷分解能の許容範囲 (σ_{eff} < 0.47) に収まった