

CTA report 152:

Comparison of photon detection performance of photomultiplier tube and silicon photomultiplier for Medium Sized Telescopes

Anatolii Zenin, Hiroyasu Tajima, Akira Okumura, Yuki Nakamura

ISEE, Nagoya University

Outline

Introduction

- CTA and Cherenkov imaging
- Motivation
- PMT and SiPM
- Medium-sized telescope

Main Part

- Setup and analysis technique
- Measurement results
- Discussion

CTA and atmospheric Cherenkov imaging

Very-high-energy Gamma Ray (20 GeV –300 TeV)

Electromagnetic Cascade

LST: 20 GeV ~ 150 GeV

Cherenkov Photons

150 GeV ~ 5 TeV

MST:

SST: 5 TeV ~ 300 TeV

K. Bernlöhr

Motivation

Advantages of SiPM:

- Background-tolerant, no degradation over time
- Stable quantum efficiency and photon detection efficiency
- Can be operated with 60V
- Lightweight, compact

PMT and SiPM

To ensure that the performance of SiPM cameras will not be inferior to the current PMT cameras, we have to compare:

- QE / PDE
- Sensitivity to signal
- Sensitivity to noise
- High NSB (moonlight) tolerance and performance under high NSB conditions
- Overall telescope performance (the end goal of this work)

PMT and SiPM sensitivity comparison (not to scale)

Medium-sized telescope

ROBAST simulation of MST optical system

Measurement setup

PMT on a rotation stage

Readout module (TARGET) on a rotation stage

Analysis technique

PMT charge spectrum sample

SiPM charge spectrum sample

Poisson distribution:

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Can extract mean value from pedestal:

 $\lambda = -\ln P(0)$

Crosstalk does not affect 0pe peaks in SiPM

Photoelectron distribution in SiPM

SiPM photo

SiPM geometry

•		•	÷	•	÷	•	•
•		•	÷.			•	•
•		•	÷	·	·	·	•
•		•	•		·	•	-
•		•	÷		•	•	
•	•	•	÷		•	•	
•		•	÷				
•		•	÷	•	÷	÷	·

Simulated photon distribution

Measurement results

Results for azimuthal angle $\phi = 0$ (see the figure on the left)

Our simulation can not reproduce absolute values, so it is normalized to fit on-axis SiPM data

There are still some issues with the measurement setup and analysis

It is likely that consideration in terms of only geometrical optics is not good enough to simulate SiPM behavior properly

Discussion

- Although the results are not final, our measurement technique is usable and only needs a little polishing
- There are still some difficulties with the setup, but that will be solved in a short time
- Relative performance is not consistent with the simulation, likely due to interference effects in Si₃N₄ and SiO₂ layers and on silicon surface
- Cutoff angle for SiPM configuration has to be checked

To do

Several things have to be done before making any solid conclusions:

- Design a new light concentrator to remove the gaps and optimize the cutoff angle (in progress)
- Compare the performance of PMT and SiPM by a simple raytracing simulation (after designing a new light concentrator)
- Perform a full telescope simulation with CORSIKA and sim_telarray and study how NSB affects new cameras (the final step)