CTA 報告150: CTA大口径望遠鏡初号機の 焦点面カメラ試運転試験

野崎誠也, 稲田知大^A, 猪目祐介^A, 岩村由樹^A, 大岡秀行^A, 岡崎奈緒^A, 岡知彦, 奥村曉^B, 折戸玲子^C, 梶原侑貴, 片桐秀明^D, 櫛田淳子^E, 木村颯一朗^E, 窪秀利, 郡司修一^F, 小山志勇^G, 齋藤隆之^A, 櫻井駿介^A, 澤田真理^A, 鈴木萌^D, 砂田裕志^H, 高橋光成^A, 高原大^I, 田中真伸^I, 田村謙治^I, 町支勇貴^I, 辻本晋平^K, 手嶋政廣^{A,L}, 寺田幸功^H, 門叶冬樹^F, 中森健之^F, 永吉勤^H, 西嶋恭司^E, 西山楽^H, 野田浩司^A, 林田将明^I, 馬場彩^M, 平子丈, 深見哲志^A, 古田智也^E, 増田周, 山本常夏^I, 吉田龍生^D, Daniela Hadasch^A, Daniel Mazin^A, 他CTA-Japan consortium, 池野正弘^{J,N}, 内田智久^{J,N}

京大理, 東大宇宙線研^A, 名大ISEE^B, 徳島大理工^C, 茨城大理^D, 東海大理^E, 山形大理^F, ISAS/JAXA^G, 埼玉大理工^H, 甲南大理工^I, KEK 素核研^J,

東海大総合理工^K, マックスプランク物理^L, 東大理^M, Open-It^N

CTA 大口径望遠鏡初号機 焦点面カメラ

光検出器モジュール

低エネルギー閾値を達成するために開発

ライトガイド 300-500nmで 反射率>90%

PMTユニット

平均QE>40%

信号波形サンプリング回路 アナログメモリチップDRS4内の キャパシタ4096個に 1GHz波形サンプリング (メモリ深さ4us)

裏面:トリガー生成回路基板 後方:バックプレーンボード (電源・トリガー・クロック分配)

大口径望遠鏡初号機へのカメラインストール

をカメラ筐体にインストール (前回物理学会 砂田講演)

2018年9月にカメラを望遠鏡にインストール

焦点面カメラを望遠鏡に取り付けた状態で 試運転試験をおこなっている

ファーストライト(2018年12月14日)

PMTに高圧を印可した状態で天頂角 30°に望遠鏡を傾けて観測し 大気シャワーを初めて検出

多数のシャワーイメージを取得することができ カメラとして機能していることを証明できた

ペデスタル電圧 と パルスタイミング

しかし、ファーストライト時点では、カメラ較正が不十分だった

 ペデスタル電圧補正解析
パルスタイミング較正試験 の現状について報告する

① ペデスタル電圧補正

① ペデスタル電圧補正 [残留電荷特性]

① ペデスタル電圧補正 [スパイク特性]

② パルスのタイミング較正

レーザーを入射した

-5

5

10

※平均が0ns

0

時間 [ns]

-10

較正用レーザー

- 波長_355nm
- パルス幅 2ns
- レーザー安定性 1% (6時間)
- フラットフィールド 一様性 <2%

パルスのタイミングずれの要因

(i) PMT内の電子走行時間のHV依存性
(ii) アナログメモリDRS4の波形サンプリング時間間隔のずれ
(iii) トリガー分配タイミングのずれ

パルスのタイミングずれの要因

→(iii) トリガー分配タイミングのずれによる影響が一番大きい

焦点面カメラ トリガーシステム

あるモジュール

モジュールで生成されたトリガーをカメラ中央モジュールに送信
カメラ中央モジュールから各モジュールにトリガーを分配し、データを取得

トリガーを同じタイミングで各モジュールに分配できるように ハードウェア上でディレイをかけることができる(要求値はタイミング1ns以内)

トリガー分配タイミングのキャリブレーション【方法】

トリガー分配タイミングのキャリブレーション【結果】

多くのモジュールでタイミングを5nsの範囲でそろえることができた

(i)PMT内の電子走行時間のHV依存性 (ii)アナログメモリDRS4の波形サンプリング時間間隔のずれ も現在補正中

まとめと今後

- 2018年9月に焦点面カメラが大口径望遠鏡に取り付けられた
- 2018年12月にはファーストライトに成功し、カメラとして機能していることを確認できた
- その後、現在もペデスタル補正やタイミング補正のための解析ソフト開発・ 較正試験を行っている
- [ペデスタル補正] アナログメモリDRS4の様々な特性をふまえて、ペデスタルを補正する 解析ソフトが用意できた
- [タイミング較正] トリガー分配タイミングのディレイ較正を行うことで、パルスタイミングを 5nsの範囲にそろえることができた

今後

- [ペデスタル補正] オンラインでペデスタル補正を行えるよう、DAQソフトに組み込む
- [タイミング較正] 波形サンプリング時間間隔の較正など、解析でも較正を行う