JPS meeting 2019.3.16

Gamma-ray search of dark matter in spatially-extended dwarf spheroidal galaxies with CTA

Nagisa Hiroshima (KEK, ICRR)

Masaaki Hayashida (Konan Univ.), Kaz Kohri (KEK, SOKENDAI)

Gamma-ray observation is powerful

3

dwarf spheroidal galaxies (dSphs)

J-factor changes with models.

Motivations

- Observation of dSph with CTA should enhance
- our accessibility to WIMP of $M_{\rm DM} \gtrsim O(1)$ TeV
- dSphs are good targets of low astrophysical
- background and high J-factor
- Previous analyses usually neglect the spatial
 - extension of dSphs
- •The importance of the profile should increases with the angular resolution of CTA and it must be quantified.

analyses of simulated data

- 1.Simulate observations of Draco dSph
 - 500-hour, CTA-North full-array
- 2.Select and bin the data energy: 0.03-180TeV, 5bin/decade
 - space: $4^{\circ} \times 4^{\circ}$, bin in $0.03^{\circ} \times 0.03^{\circ}$
- 3. Derive 95% confidence level upper
 - limits of gamma-ray flux
- 3 channel ($\bar{b}b$, W^+W^- , $\tau^+\tau^-$), 16 profile for Draco

using ctools

Flux from DM annihilation

Conclusion

- •We can probe WIMPs of $m_{\rm DM} \gtrsim \mathcal{O}(1)$ TeV with CTA.
- dSphs are resolved as extended sources.
- Analyses assuming a point-like dSph should overly
- constrain the annihilation cross-section.
- •We can derive the particle parameter within a factor of ~10 uncertainty in profile models.
- We can probe unexplored regions smaller than
- $\langle \sigma v \rangle = 10^{-23} 10^{-24} \text{cm}^3/s$ for $m_{\text{DM}} \gtrsim \mathcal{O}(1)\text{TeV WIMPs}$.
- This is sufficient to test some well-motivated
 - models expecting resonant annihilations.