

次世代ガンマ線望遠鏡CTA用SiPMの最適化

田島宏康, 山根暢仁, 奥村 曉, 朝野 彰, 中村 裕樹, 日高 直哉, 他 CTA-Japan consortium 日本物理学会 2017年秋季大会

宇都宮大学, September 12-15, 2017

- Observations of gamma rays in 20 GeV 300 TeV band
 - Cherenkov light from electromagnetic shower produced by interaction of gamma rays with atmosphere
- Large collection area by placing many telescopes

* x10 better sensitivity than current instruments

- Wide energy band coverage by three different sizes of telescopes
 - Large-sized telescope (LST): Φ = 23 m, 20 GeV 1 TeV, 4 telescopes
 - Medium-sized telescope (MST): $\Phi = 10 12$ m, 0.1 10 TeV, ~20 telescopes
 - Small-sized telescope (SST): Φ = 4 m, 1 >300 TeV, 50 70 telescopes all SSTs are placed at south site

- SST-1M (single mirror)
 - * Czech Republic, Ireland, Poland, Swiss
- SST-2M (dual mirror)
 - * Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI)
 - ✦ Italy, Brazil, South Africa
 - Gamma-ray Cherenkov Telescope (GCT)
 - ✦ Australia, France, Germany, Japan, Netherlands, UK

GCT

GC

次世代ガンマ線望遠鏡CTA用SiPMの最適化 日本物理学会 2017年秋季大会, SEP 12–15, 2017, 宇都宮大学

- Dual mirror design allowing use of compact camera
 - Schwarzschild-Couder (SC) optics
 - Short focal length to realize small plate scale (small camera, pixel)
 - Large field of view
 - Greater telescope spacing (larger collection area)
 - Technically challenging
 - Small pixel (6–7 mm) photon sensor to reduce camera cost
 - Multi-anode photomultiplier (MAPMT) or Silicon Photomultiplier (SiPM)
 - High density readout electronics (ASIC)

次世代ガンマ線望遠鏡CTA用SiPMの最適化 日本物理学会 2017年秋季大会, SEP 12–15, 2017, 宇都宮大学 GCT

Comparison with Single-Mirror Camera

SST-1M camera

日本物理学会 2017年秋季大会, SEP 12-15, 2017, 宇都宮大学

ASTRI camera

~50 cm 10.9°

GCT

37 modules/camera 2,368 pixels/camera 0.19° (7 mm)/pixel

32 modules/camera 2,048 pixels/camera 0.15–0.18° (6–7 mm)/pixel

- Cherenkov photons peaks around ~350 nm
 - ✦ Blue to near UV sensitivity is important
- Angular range for incident photon is 30–60°
- Cherenkov photons arrives within few to few tens of ns
 - ns-timing is important

Night sky background (NSB) is the dominant background

- Rate is >25 MHz/pixel
 - ✦ Dark count rate is not very important
 - [NSB] x [Optical crosstalk (OCT)] can cause false triggers due to accidental coincidences
 - Low OCT rate is important
- NSB peaks above 550 nm
 - Low red sensitivity is preferred
- Pixel size < 0.25 deg is required to obtain good angular resolution of air showers
 Pixel size ~ 6 mm with 4-m telescope

Secondary

mirror

Camera

mirror

- Cost per channel
- Photon detection efficiency
- Tolerance against high rate environment (> 25 MHz per pixel)
- Reliability
- Major drawback of SiPM
 - Optical crosstalk (OCT)
 - High rate night sky background (NSB) + OCT can cause false triggers due to accidental coincidences
 - * Gain dependence on the temperature
 - High sensitivities for red light (NSB wavelength)
- Main objective of CTA SiPM development
 - Suppress OCT while retaining photon detection efficiency (PDE)
 - Add trenches
 - Optimize protection coating

次世代ガンマ線望遠鏡CTA用SiPMの最適化

Test Samples

Product ID	Pixel size	Cell size	Technology	Short name	Fill factor
S12572-050C	3 mm	50 <i>µ</i> m	Standard	REF-3050-S	62%
S13360-3050CS	3 mm	50 <i>µ</i> m	LCT5	LCT5-3050-S	74%
S13360-3050VE	3 mm	50 <i>µ</i> m	LCT5, 100 <i>µ</i> m epoxy	LCT5-3050-E100	74%
S13360-3050PE	3 mm	50 <i>µ</i> m	LCT5, 300 <i>µ</i> m epoxy	LCT5-3050-E300	74%
S13360-6050CS	6 mm	50 <i>µ</i> m	LCT5	LCT5-6050-S	74%
S13360-3075CS	3 mm	75 <i>µ</i> m	LCT5	LCT5-3075-S	82%
S13360-6075CS	6 mm	75 <i>µ</i> m	LCT5	LCT5-6075-S	82%
LVR-3050CS	3 mm	50 <i>µ</i> m	LVR	LVR-3050-S	74%
LVR-6050CS	6 mm	50 <i>µ</i> m	LVR	LVR-6050-S	74%
LVR-6075CS	6 mm	75 <i>µ</i> m	LVR	LVR-6075-S	82%
LVR-7050CS	7 mm	50 <i>µ</i> m	LVR	LVR-7050-S	74%
LVR2-6050CS	6 mm	50 <i>µ</i> m	LVR2	LVR2-6050-S	74%
LVR2-6050CN	6 mm	50 <i>µ</i> m	LVR2, no coating	LVR2-6050-N	74%
LVR2-7050CS	7 mm	50 <i>µ</i> m	LVR2	LVR2-7050-S	74%
LVR2-7050CN	7 mm	50 <i>µ</i> m	LVR2, no coating	LVR2-7050-N	74%

We have tested SensL and FBK SiPMs as well as Hamamatsu SiPMs. Only Hamamatsu SiPMs are shown for easy comparisons 次世代ガンマ線望遠鏡CTA用SiPMの最適化 LCT: Low Crosstalk

LVR: Low Breakdown Voltage

SiPM Measurement Setup at Nagoya

Take waveform data by digital oscilloscope

次世代ガンマ線望遠鏡CTA用SiPMの最適化

- We measure number of photons for short LED (or laser) pulses
 - Current measurement does not provide accurate PDE due to optical crosstalk, delayed cross talk and after pulse
- Number of photo electrons (p.e.) does not follow Poisson distribution due to optical crosstalk
 - Probability of 0 p.e. is used to obtain the average to avoid effect of optical crosstalk
 - Effect of dark count still need to be taken into account

$$P(n) = e^{-\mu} \mu^n / n!$$
$$P(0) = e^{-\mu}$$
$$\mu = -\ln(P(0))$$
$$P_{\text{true}}(0) = P_{\text{ON}}(0) / P_{\text{OFF}}(0)$$

 Common between Nagoya and Catania

次世代ガンマ線望遠鏡CTA用SiPMの最適化

- Assume 1 p.e. peak of dark signal is dominated by dark count
 - 2 p.e. peak consists of optical crosstalk from 1 p.e. and chance coincidence of dark counts
 - Assume chance coincidence of dark counts follow Poisson statistics (small correction for most cases)

▲ REF

- 6050

LCT5

LVR

LVR2

- If we take PDE normalized by fill factor as a function of relative over voltage, the curve are very similar among different SiPM
- LVR is slightly better than others
- Differences among individual SiPMs are small 3050 - 3075

- Factor out cell capacitance dependence of crosstalk rate by scaling it with cell area and depth (assuming cell depth ∝ break down voltage) 3050 3075
 - ***** 3 mm pixel gives lower OCT than 6 mm pixel
 - OCT propagates partly via protection coating
 - LVR is worse than LCT5 and LVR2
 - Differences among individual SiPMs are small

G

LCT5

LVR

LVR2

6050

6075

- 7050

Thicker coating or no coating give lower crosstalk

Further optimization of coating thickness is in progress

日本物理学会 2017年秋季大会, SEP 12-15, 2017, 宇都宮大学

LVR2-6050 and LVR2-7050 with no coating gives best performance for OCT below 5%

Effect of OCT will be less than pile up of NSB in this regime

LVR-3050 with coating gives best performance for OCT above 5%
Further optimization of coating thickness is critical

- SiPM performance does not vary among individual devices within the same batch
- PDE dependence on the relative over voltage is very similar among Hamamatsu SiPM types if PDE is normalized by fill factor
- ***** OCT is affected by protection coating
 - Smaller pixel size and thicker coating reduce OCT rate
 - No coating significantly reduces OCT rate
- LVR2-6050 and LVR2-7050 with no coating gives best performance for OCT below 5%
 - * Effect of OCT will be less than pile up of NSB in this regime
- LVR-3050 with coating gives best performance for OCT above 5%
- Prospects
 - Optimize the coating thickness to minimize OCT rate
 - SST-2M will use >100k of 6-mm SiPMs over the next ~4 years