CTA 報告 113: Schwarzschild-Couder 光学系を用いた小・中口径望遠鏡の開発

奥村 曉、朝野 彰、片桐 秀明^A、佐藤 雄太、重中 茜^A、 田島 宏康、中村 裕樹、山根 暢仁、他 CTA Consortium

名古屋大学宇宙地球環境研究所(ISEE)、茨城大理A

2016年9月22日 日本物理学会

Cherenkov Telescope Array (CTA)

Schwarzschild–Couder Telescope (SCT)

- At first, proposed as Advanced Gamma-ray Imaging System (AGIS)
- Now an extension for the CTA South
 - Will improve the sensitivity in 100 GeV – 10 TeV
 - ► Davies–Cotton MST × 25
 - Schwarzschild–Couder × 25
- Challenges
 - High-quality mirrors and fine alignment
 - SiPM array and ASIC
- Will realize a large FOV of 8° and fine angular resolution of ~0.06°

SCT Advantages

Wood+ (2016)

- MC study shows SCTs have better angular resolution of arrival direction by a factor of ~1.5 than Davies–Cotton MSTs
- ~30% better sensitivity for point sources
- Less expensive camera pixel cost

The SCT Camera

- The plate scale of 97.5 mm/deg and FOV of 8° require SiPM or MAPMT camera modules
- The focal plane is covered with 11,328 SiPM pixels
- 64 pixels per module are readout by 4 TARGET ASICs

The SCT Prototype is under Construction

Small-Sized Telescope (SST)

- 3 different designs proposed
 - ASTRI
 - 1M-SST (Davies–Cotton)
 - Gamma-ray Cherenkov Telescope (GCT)
- GCT uses similar techniques as in SCT
 - SC optics
 - TARGET modules and SiPMs
 - Backplane board
 - Camera control and DAQ software
- The GCT prototype was inaugurated at the Paris Observatory in Dec 2015

Inauguration of the GCT Prototype (Dec 2015)

The GCT Camera Prototype (with MAPMTs)

The First Cherenkov Light in CTA (Nov 26, 2015)

r1594_e9_t33-54_EventMovie

Thu Nov 26 18:53:37 2015 (UTC) First GCT-M On-Sky Data, Peak values ~275 p.e.

SiPM-based GCT Camera

- **32** MAPMTs will be replaced by SiPMs, and the latest TARGET ASICs will be used
- A prototype with improved camera mechanics will be built in 2017
- Three production telescopes will be at the CTA South in 2018

TARGET ASIC – 16-ch Readout and Trigger

T5TEA

TARGET 5

- We have been developing TARGET ASICs since 2009
- The trigger performance was worse than expected in T1, T5, and T7 (TARGET variants)
- Finally satisfactory trigger performance achieved in the latest design (TARGET C & T5TEA)

SiPM Characterization for SCT and SST See 山根暢仁 24aSG-10

- SiPM characterization in various temperature/voltage conditions underway
- Recent SiPMs have lower crosstalk rate and higher PDE compared to ~2010
- PDE ~60% is expected with a lens array

- We have developed
 - Schwarzschild–Couder telescopes for CTA Medium and Small-Sized Telescopes
 - Cameras with the TARGET ASIC technology and SiPMs
- The prototype of GCT (a Small-Sized Telescope design) was inaugurated at the Paris Observatory Dec 2015
- The first Cherenkov events ever in CTA were recorded
- Further improvements of TARGET, photodetectors, and camera mechanics foreseen