次世代チェレンコフ望遠鏡CTA計画の 小口径望遠鏡カメラに向けた 半導体光電子増倍素子の特性評価

名古屋大学宇宙地球環境研究所^A, マックスプランク核物理^B

山根暢仁^A, 奥村曉^{A,B}, 佐藤雄太^A, 田島宏康^A, 日高直哉^A

Cherenkov Telescope Array (CTA)

- 宇宙から来る超高エネルギーガンマ線観測を目的とした国際共同実験。
- ガンマ線によるシャワーのチェレンコフ光を観測することでエネルギー と方向が測定できる。
- 大中小の望遠鏡を 3–10km²の領域に多数配置することで、
 20 GeV-300 TeV の広いエネルギー帯で観測が可能。
- 従来の地上チェレンコフ望遠鏡より約10倍の感度の向上を目指す。
- この観測によって、新しいガンマ線天体やダークマターの発見が期待

できる。

Gamma-ray Cherenkov Telescope (GCT)

- 5-300 TeV の高エネルギーガンマ線観測を目的とした小口径望遠鏡
 のデザインの一つ。
- 副鏡によって焦点距離を短縮し、カメラの小型化が実現可能。
 - ▶ 小型化による費用の低減によって、望遠鏡を多く設置することができ、検出感度の向上が見込まれる。
- 光検出器には半導体光電子増倍素子 (SiPM) を採用予定。

半導体光電子増倍素子 (SiPM)

多数のセルによって構成される半導体光検出器。 降伏電圧以上の超過電圧 (Overvoltage) をかけると、1個のセルに光子が 入射した時に電子雪崩が起こり、1光子の信号として出力する。

SiPMのノイズ特性

◆ ダークカウント

- 入射光子でなく熱的光電子によって電子雪崩が起き、
 1光子以上の信号を出力する現象。

◆ オプティカルクロストーク (本講演ではクロストークと呼ぶ)

- 電子雪崩で生じた二次光子が他のセルで電子雪崩を 起こし、1光子の信号を2光子以上の信号として出力す る現象。

本研究の目的

評価項目

◆ 光検出効率

光検出効率が高いと、少ないチェレンコフ光でもガンマ線イベントの検出が可能 となるので、望遠鏡の間隔を広げることができ、有効面積の拡大が期待できる。 ◆ クロストークレート

クロストークの発生によって、バックグラウンドとなる<mark>夜光</mark>の信号が増幅されてガン マ線イベントとしてトリガーされ、ガンマ線検出効率が落ちてしまうのでクロストーク レートは低い方が望ましい。

光検出効率とクロストークレート は相反関係にあるため、最適な 動作点を決める必要がある。

Overvoltage[V]

測定項目と解析方法

光検出効率の測定

発光している時間で波高値を取ることで、検出した光電子の分布を作ることができる。 検出光電子数を求めることで光検出効率を相対的に評価できる。

クロストークレートの測定

発光していない時間で観測されるイベントはダークカウントのみなので、 クロストークによってダークカウントの分布がどれほどずれているか見ることができる。

検出光電子数

ON,OFF-timigで波高分布を作成。 $\frac{\rho_{P,e}}{\rho_{P,e}}$ の波高分布はポアソン分布に従わないため、 0 p.e.のイベントを使って平均検出光電子数 λ を求める。

クロストークレート

ダークカウントがポアソン分布に従うと仮定して、OFF-timingでの全イベント数で、2 p.e.以上のイベントの割合を以下の式で近似する。

LCT5のクロストークレートが高いのは、ピクセル サイズが大きいためと考えられる。

まとめと展望

まとめ

- ◆ CTA計画のGCT用カメラに向けたSiPMの候補製品 (MPPC, SensL)を7個測定した。
- ◆ 各SiPMの特性を波形解析によって比較した結果、クロストークレートと光 検出効率の相関関係が良かったSiPMはLCT4-50、LCT5-75となった。
- ◆ クロストークレートがどの程度まで許容できるかによって選定するSiPMが 異なるので、CTAで実際に用いる望遠鏡群と夜光を考慮したシミュレー ションによる結果が待たれる。(佐藤報告 22aAT-4)

今後の展望

- ◆ 本講演ではLEDの波長が375nmでの測定結果を報告したが、大気チェレンコフ光のスペクトルより各波長で検出光子数を正確に見積もるため、 PDEの波長依存性を調べる必要がある。
- ◆ ピクセルサイズによってクロストークレートが大きくなる傾向があるのか確 かめるため、LCT5の3mm角デバイスのクロストークレートを測定する。