First results of the camera prototype for the Large Size Telescopes of the CTA

D. Hadasch (ICRR)
on behalf of the LST collaboration
Overview

- Camera for the Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA)
- Prototype camera (Mini Camera)
 - Purpose
 - Setup
 - Results

CTA is all sky observatory consisting of two stations in South and North

LST 23m

MST 12m

SST 4.3m

Courtesy of M. Teshima

ASJ 2016 - D. Hadasch
Focus on LST - Camera

- 2.2m diameter
- 265 modules à 7 pixels → 1855 pixels
- 1 module à 7 pixels

Courtesy of D. Nakajima

ASJ 2016 - D. Hadasch
PMT module

Technical Design Report

ASJ 2016 - D. Hadasch

Courtesy of D. Nakajima
Module Control

- **Slow control of the modules** is done through an FPGA on the DRS4 readout board

- **Control** and **Monitoring** of PMT modules

- **Settings** per pixel/cluster/all clusters:
 - High voltage, trigger threshold, sampling rate, readout window, DRS settings, trigger setting (L0 + L1)
 - **Monitor**: Temperatures, currents, voltages, rates
 - **Individual pixel rate control** (IPRC)
Module Control program (ClusCo)

6 ethernet switches

Multi thread programing written in C
1 thread per switch
→ 6 threads ideally running on 6 cores
→ Loop over 48 modules within a thread

One switch = 48 connections

265 modules
1 module = 1855 pixels
7 pixels
1 module = 48 connections

Switch Switch Switch Switch Switch Switch

Module Module Module Module Module Module
PMT PMT PMT PMT PMT PMT
Module Module Module Module Module Module
PMT PMT PMT PMT PMT PMT
Module Module Module Module Module Module
PMT PMT PMT PMT PMT PMT
Module Module Module Module Module Module
PMT PMT PMT PMT PMT PMT
Module Module Module Module Module Module
PMT PMT PMT PMT PMT PMT
Module Module Module Module Module Module
PMT PMT PMT PMT PMT PMT
Aims and Use of Mini Camera system

- Mini Camera consists of 19 modules
- Mini Camera test (Integration test)
 - Validations of multi-cluster assembly and functionality
 - Mechanics
 - Trigger, Communications, Control
 - DAQ, Power Consumption, etc.
- Module Characterization
 - Compile a database
 - Characterize basic parameters
 - Long term stability
Mini Camera

- 19 Modules inserted in the mini-camera holder
Mini Camera setup at ICRR (schematic view)
Mini Camera setup at ICRR (real view)
Single Photo-Electron Response

Charge distributions of several pixels

HV = 1400V (NOT nominal voltage)
Gain vs. High Voltage

- Long term monitoring for 10hrs with test pulse injection
- #dynodes = 8
- Voltage fixed between Cathode and first Dynode to 350V
- Charge saturates above 1400 V because of dynamic range of the high gain readout. We have Low gain, too (not shown here).
Long term monitoring of gains

- Long term monitoring for 10hrs with test pulse injection

Charge & Charge RMS stable within 2% for high and low gain
Achievements

- **Mechanical validation** of the multi-module assembly: no problem on the mechanical structure

- **Power consumption** of a module is about 800 mA while the DAQ is running with the power of PMTs off

- **Basic functionalities** have been intensively and successfully tested

- **Development of ClusCo** (ClusterControl): 19 clusters can be controlled from ClusCo via multithread program

- **Trigger Propagation test** through L0L1 mezzanine, analog backplane and TIB prototype: No problem

- **Development of DAQ program**: C++ program with basic functionalities, such as the architecture of the program, data format, event reading, event writing, event building, data corruption checks and buffers.
Thank you
ありがとうございます