CTA 報告 85: Schwarzschild-Couder 型望遠鏡用の 焦点面カメラの開発状況

奥村曉^{A,B},河島孝則^A,田島宏康^A,日高直哉^A

J. Hinton^B, R. White^B, S. Funk^c, L. Tibaldo^c, J. Vandenbroucke^D, G. Varner^E 他 The CTA Consortium

名大 STE 研^A, Univ. Leicester^B, SLAC^C, Univ. Wisconsin^D, Univ. Hawaii^E

2014 年 9 月 18 日 日本物理学会 2014 年秋季大会 @ 佐賀大学

CTA: A Mixed Array of Different Telescopes

Large-Sized Telescope (LST) 4@North + 4@South D = 23 m FOV = 4.5° E = 20 GeV - 1 TeV

Medium-Sized Telescope (MST) ~24@N + ~15@S D = 12 m FOV = 8° E = 100 GeV - 10 TeV Schwarzschild-Couder Telescope (SCT) ~24@S D = 9.6 m FOV = 8° E = 100 GeV - 10 TeV Small-SizedTelescope (SST)GCT \sim 35@SASTRI \sim 35@SDavis-Cotton \sim 20@SD ~4 mFOV ~9°E = 1 TeV - 300 TeV

© G. Pérez, IAC, SMM

Schwarzschild-Couder (SC) Optical System

- First proposed for IACTs in 2007
- Primary + secondary mirrors
 - Wide field-of-view of ~8°
 - High angular resolution of ~4'
 - Small plate scale of ~0.6'/mm
- Will be used in SCT and SST
- Small angular resolution and wide FOV bring us higher sensitivity

The SCT Optical System and Photodetectors

Mirrors' quality and misalignment are not included

	S12642-0404PA-50		
••	3 mm × 3	mm	·
			·
		Analog S 4 pixels	um of
. •			

- The typical PSF size of SCT is ~6 mm (~4')
- Compact and modular camera frontend electronics with small-pixel photodetectors needed
- Silicon photomultipliers (SiPMs or MPPCs) or MAPMTs match the pixel size

TARGET (TeV Array Readout with GSa/s sampling and Event Trigger)

- Application specific integrated circuit (ASIC) for CTA
- Developed TARGET 1 for concept validation (Bechtol et al. 2012)
- TARGET 5 (w/ gain adjustment) for MAPMTs, TARGET 7 for MPPCs

SST-GCT (Gamma Compact Telescope) and CHEC

- One of three SST designs, based on SC optical system
- Compact High-Energy Camera (CHEC) will be mounted
 - CHEC-M: Prototype with MAPMTs
 - CHEC-S: Prototype with SiPMs
- Shares technologies with SCT

Development of TARGET ASICs

- TARGET 1 (see Bechtol et al. 2012)
 - The 1st generation of TARGET produced in 2008
 - Limited bandwidth of ~150 MHz at 3 dB
 - High cross talk of ~4%
 - Saturation for high amplitude inputs
- (TARGET 2, 4, and) TARGET 5
 - Produced in 2012 for MAPMTs (CHEC-M)
 - Achieved ~400 MHz bandwidth and low cross talk of ~1%
 - High trigger threshold (~25 mV, ~6 p.e.) due to noise from the sampling circuit
 - Narrow dynamic range and non-linearity of the transfer function
- TARGET 7
 - Produced in 2013 for SiPMs (CHEC-S and SCT)
 - Much better linearity
 - The threshold issue still remains (even worse)
- New TARGET design will be submitted in 2014

TARGET-5 Transfer Function

- The non-linearity of TARGET 5 transfer functions made our calibration process more difficult, while the noise level was low enough
- Dynamic range of ~1.6 (V) was smaller than our requirement (> 10 bits)

TARGET 7 Transfer Function

- Linearity was much improved from TARGET 5
- ► Wider dynamic range from ~0.5 to ~2.5 (V) (~0.5 to ~2.1 for TARGET 5)

S-Curve Shape Changes in Sampling Phase (TARGET 5)

The First Mass Production of Modules for CHEC-M

- Produced by SLAC with TARGET 5 ASICs
- Tested at SLAC in March and April 2014
- Delivered to University of Leicester and tested again in July
 - HV module
 - Trigger functionality
 - Transfer functions
 - Sampling stability
 - Sinusoidal input

CHEC-M with a Prototype of Backplane Board

CHEC-M with a Prototype of Backplane Board

16 × 16 MPPC with Thin-Film Coating

- TSV MPPCs of 16 × 16 channels (S12642-1616PA-50) will be used for CHEC-S
- Thin-film coating of 20-um thickness, expecting high PDE in UV (< 350 nm)</p>
- The first batch has been delivered to the UK in Aug 2014

- TARGET

- Finish evaluation and tuning of TARGET 7
- Submit a new TARGET design that has separated trigger and sampling ASICs
- Produce TARGET 7 camera modules for proto-SCT and CHEC-S

- CHEC

- Software development of DAQ and slow control
- Long term test of CHEC-M in a dark box
- Assemble CHEC-S
- MPPC
 - Evaluation of the thin-film coating MPPCs