CTA計画チェレンコフカメラに向けた半導体光検出器 MPPCの性能評価及びトリガー効率の詳細評価

日高 直哉^A、田島 宏康^A、奥村 曉^A、David Williams^B、 Aurelien Bouvier^B、他 the CTA Consortium

名大STE 研^A、UCSC^B

CTA計画チェレンコフカメラに向けた半導体光検出器 MPPCの性能評価及びトリガー効率の詳細評価

日高 直哉^A、田島 宏康^A、奥村 曉^A、David Williams^B、 Aurelien Bouvier^B、他 the CTA Consortium

名大STE 研^A、UCSC^B

Cherenkov Telescope Array (CTA)

- 20 GeV~100 TeV 以上の
 宇宙ガンマ線の観測
- 日米欧を中心とした国際共 同実験
- 現在稼働中のチェレンコフ
 望遠鏡から 10 倍の感度向
 上を目指す
 - 複数の望遠鏡でガンマ線 シャワーイメージを再構成
 - ▶ 検出光量からエネルギーを 決定
 - ▶シャワーイメージから到来 方向を決定

● 望遠鏡で集光された光を光検出器で検出

チェレンコフカメラ

MPPC (Multi Pixel Photon Counter)

- 半導体光検出器
- MAPMTに対して高い光検出効率
 - チェレンコフ光の検出光量は60%向上 (2012年春 発表)
- 望遠鏡の小型化が可能
- 費用低減分を望遠鏡台数の増加に充てることでCTAでのガン マ線天体の検出感度向上

チェレンコフ望遠鏡へのMPPCの採用を目指す

MPPCの採用にむけて

- 基礎性能の詳細評価 (温度依存性、動作電圧依存性)
 - ► CTAでは野外での運用
 - →運用環境での最適な動作条件の決定が重要
 - ▶ダークカウント、光検出効率、増幅率 (2012秋発表内容)
 - 0°C ~40°Cでの動作電圧依存性の測定
 - 動作電圧のコントロールで安定した性能を得られる
 - ▶ 望遠鏡トリガー性能の見積もり (今回の発表)
 - クロストーク、アフターパルス測定

トリガー効率の悪化

- ダーク信号や夜光信号がガンマ線イベントとしてトリガーされる
- クロストーク、アフターパルスの影響も含めた評価が必要
- 各p.e.閾値でのトリガーレートを求める

クロストークレート測定系

- MPPCを遮光して測定
- パルスジェネレータからト
 リガー
- 80 nsの時間幅での最大出力 電圧値を波高値として取得

thermal chamber

クロストークレート測定系

- MPPCを遮光して測定
- パルスジェネレータからト
 リガー
- 80 nsの時間幅での最大出力 電圧値を波高値として取得

thermal chamber

APD pixels

1つの励起ピクセルの発生によってk個のピクセルが励 起する確率 $P(k) = e^{-\lambda_{\text{C.T.}}} \frac{\lambda_{\text{C.T.}}^k}{k!}$

k:励起するAPDピクセル数

λ:励起するAPDピクセル数の平均

1 p.e. イベント :

ダーク信号で1つのAPDピクセルが励起 →そのピクセルはクロストークを起さない $R_{dark} imes P(0)$ R_{dark}:dark count rate (≥1 p.e.) →1 p.e.イベント数から $\lambda_{c.T.}$ を取得

3 p.e. events の場合:

$R_{\text{dark}}(\underline{P(2)} \times P(0)^2 + \underline{P(1)} \times P(1) \times P(0))$

P(k)はλ_{C.T.}の値から計算

→各p.e.閾値でのクロストークによるトリガーレートが計算可能に

測定値と計算値がよく一致 →各p.e.閾値でのクロストークによるトリガーレートが計算可能に

アフターパルスの解析

$$p_a \left(\frac{1}{\tau_a} e^{-t/\tau_a}\right) + (1 - p_a) \left(\frac{1}{\tau_{dark}} e^{-t/\tau_{dark}}\right)$$

pa:アフターパルスレート
Ta:アフターパルスの時定数
T_{dark}:ダークカウントの時定数

アフターパルスレート

トリガーレートの計算

- ダークカウント + 夜光バックグラウンド(NSB)
- アフターパルスレート ra
 - factor $\frac{1}{1-r_a}$

• クロストーク

λc.τ. から計算

→ 4 p.e. 閾値

 $(f_{\text{NSB}} \cdot \text{PDE} + f_{\text{dark}}) \times \frac{1}{1 - r_{\text{a}}} \times \{1 - (P(0) + P(1) \times P(0) + P(2) \times P(0)^{2} + P(1) \times P(1) \times P(0))\}$

f_{NSB} : 夜光バックグラウンドレート f_{dark} : ダークカウント

- 6mm imes 6mm pixel
- ・夜光バックグラウンドレート = 5 MHz (SST)

高PDEで ~10 MHz

~kHzまで下げたい (望遠鏡のトリガーロジックに依存) 5℃ から 40℃ で10倍の増加 (夜光バックグラウンドレートに依存)

- クロストークとアフターパルスの測定から、各
 p.e.閾値でのトリガーレートが計算可能になった
- 今後、望遠鏡のトリガーロジックを含めたシミュ
 レーションが重要
- クロストークレートが改善されたMPPCでの測定