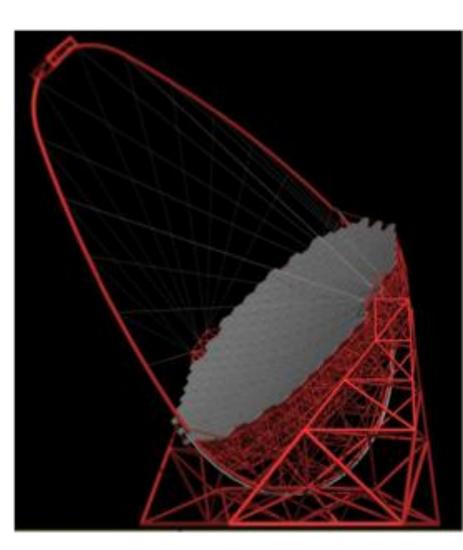
CTA 報告57: CTA 大口径望遠鏡のためのAMC 開発

野里明香 A,千川道幸A,奥村曉F,加賀谷美佳E,片桐秀明E,峪中良介A,周小溪A,田中駿也E,手嶋政廣B,C,中嶋大輔C,馬場浩則E,林田将明G,柳田昭平E,山本常夏D,吉田龍生E


近畿大理工 A, 東大宇宙線研B, Max-Planck-Inst. fuer Phys. C, 甲南大理工D, 茨城大理E, 名大STE 研F, 京都大理G

目次

- LST要求仕様
- AMC(Active Mirror Control)システムのR&D
 - •実験目的
 - ・光軸のずれ量検出
 - 一概要
 - 一近畿大学での画像処理
 - •アクチュエータ
 - 一概要
 - ーzurich大学のシステム
 - 一実験装置
 - 一制御方法
- まとめ
- 今後行う実験

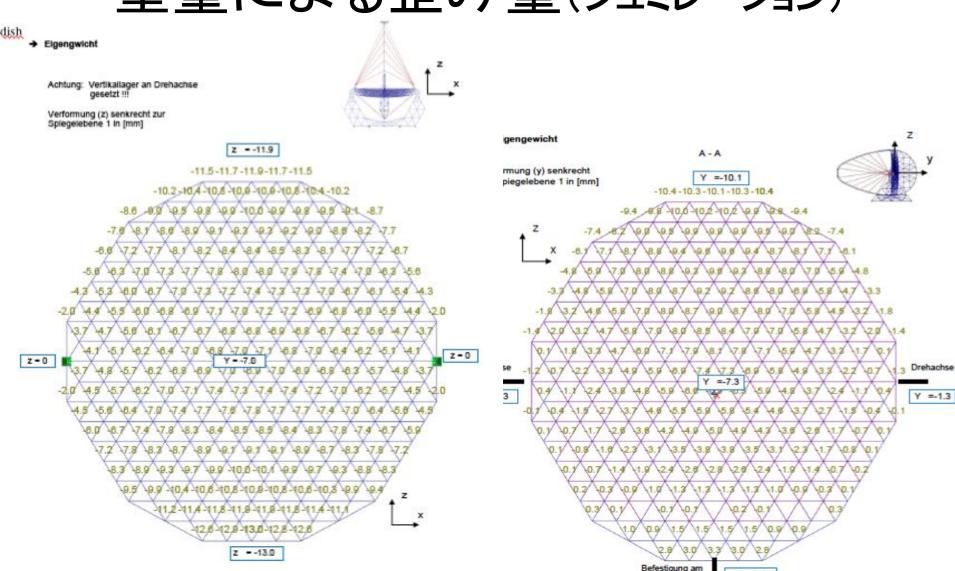
LST要求仕様

- 口径: 23m
- 鏡総面積: 407 m²
- · 焦点距離:28m, F/D = 1.2
- · 総重量:50t
- 鏡形状: Parabolic
- Active Mirror Control
- 視野: 4.5 degrees
- ・カメラpixelサイズ :0.1 degrees
- 回転速度: <180 deg/20 sec

Designed by MPI Munich and MERO

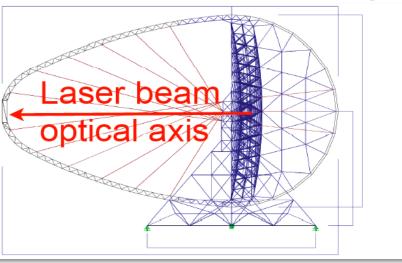
AMC(Active Mirror Control)システムのR&D

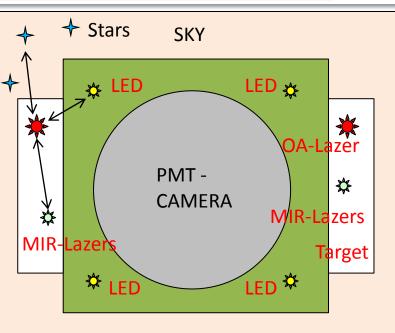
LSTの変形、CCDカメラのずれが生じる原因



- 自重(zenithangle)
- -風圧
- •温度依存性

実験目的


- AMCシステムの開発 構造体の歪みによる分割鏡の光軸のずれ
 - 一光軸のずれ量の検出 レーザー、カメラ→画像処理
 - ーずれ補正のための制御 アクチュエータ制御システム
- Zurich大学のAMCシステムを参考


重量による歪み量(シュミレーション)

Kettenantrieb

光軸のずれ検知システム(検討中)

光軸を決定 (IRレーザーを鏡の中心から発射させる)

PMT側にLEDを設置 各分割鏡にレーザーを取り付け

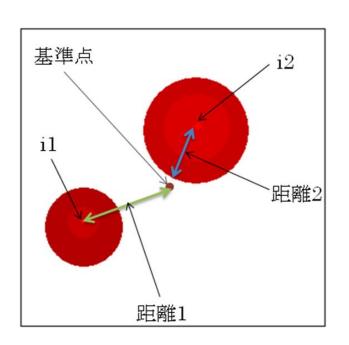
鏡の中心にHRカメラを設置IRレーザーと星の位置を観測

(カメラのLEDの位置) - (光軸の位置) = カメラのずれ (鏡のレーザーの位置) - (光軸の位置) = 鏡のずれ

IMAGE with HR CCD Camera

近畿大学で行っているレーザー位置検出画像処理実験

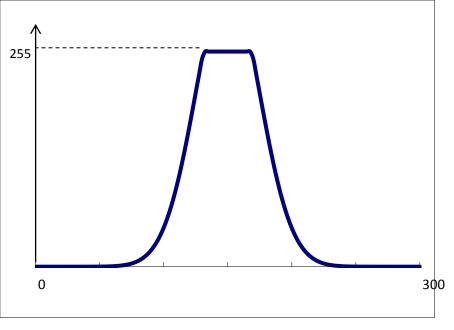
- 1.輝点の中心を決定 (ある基準点からの距離を計算)
- 2.輝点が一つでなく二つの場合でも計算可能

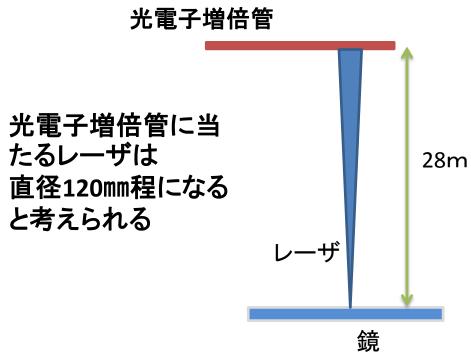


実行結果

基準点 (x,y)=(150,150)

i1,輝度最大值255, (x,y)=(61, 104) 距離1=55pixel

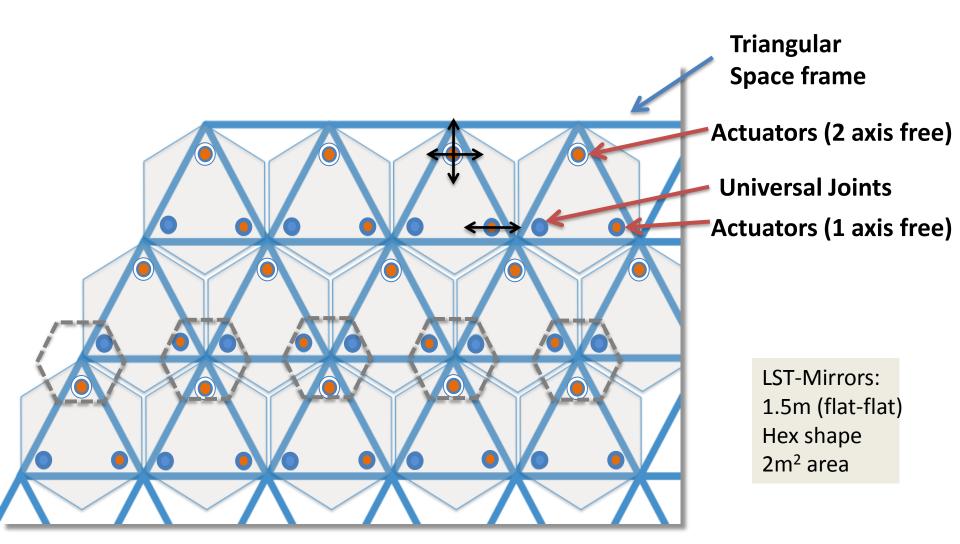

i2,輝度最大值242, (x,y)=(174, 202) 距離2=196pixel

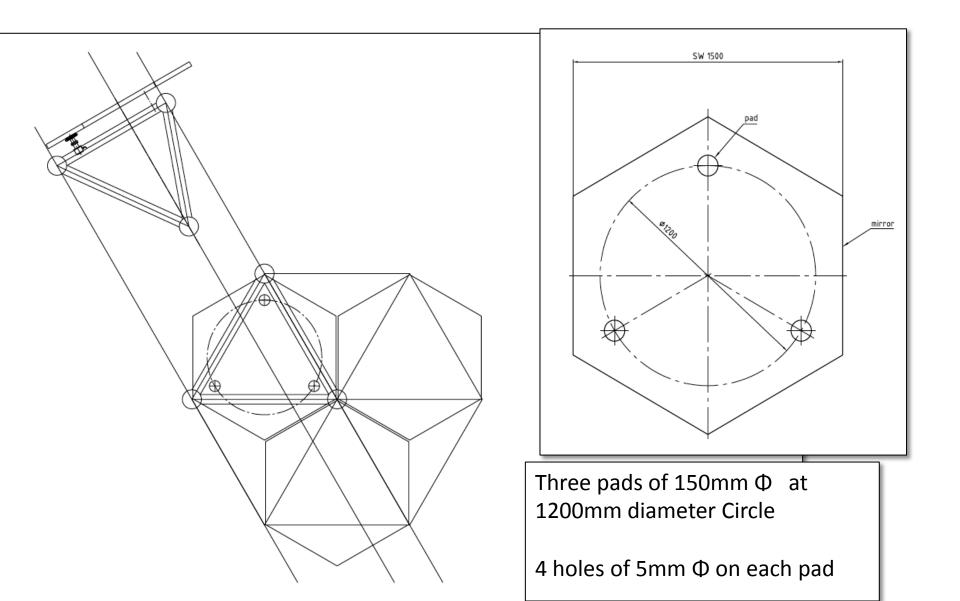


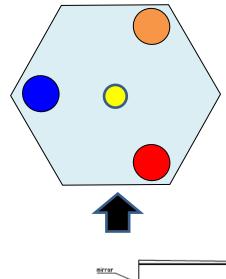
今後のプログラム改善点

大きさを持つ輝点に対して計算可能にする (レーザが片側3mradほどの広がり角を持つため)

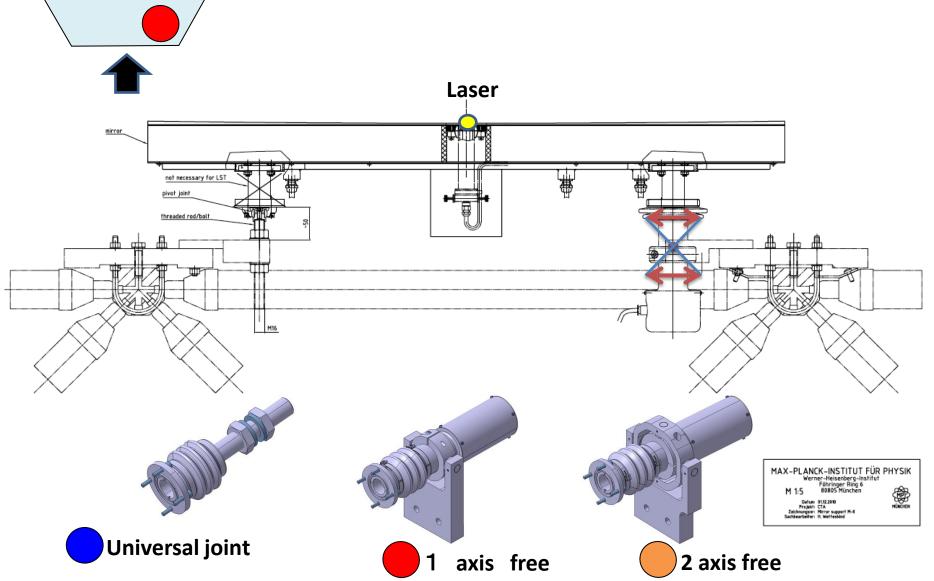
輝点の中心が1pixelに納まらない場合



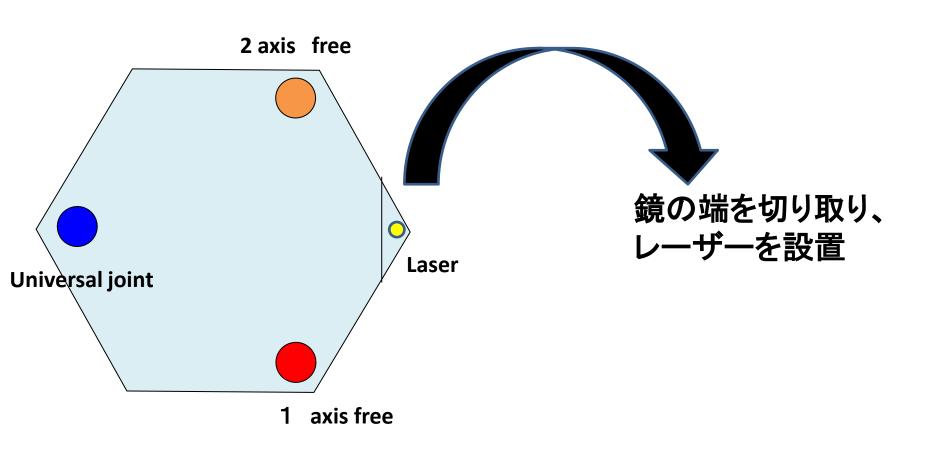

アクチュエータ


- •要求スペックを満たすアクチュエータ
- •日本SMC社製アクチュエータの選定
- ●制御システムのR&Dを開始
- ●ライフテスト 5000km or 30000 strokes:SMC社データ

LSTのフレーム上の鏡とアクチュエータ

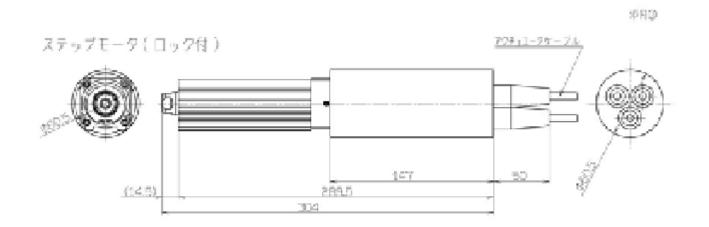


AMCに接続するパッドの取り付け位置



Zurich アクチュエータ

LST用レーザ設置(予定)



アクチュエータ要求仕様

	全長 外形	⑩メカ的スキマ	$10\mu\mathrm{m}$
①外形寸法	244mm	⑪ストローク	36mm
	184mm Φ 65(Fixpoint)	601# L	
②本体質量	ACT: 1000g 土台1角度用: 1000g 土台2角度用: 1300g 支柱: 650g(Fixpoint)	⑫推力	最大330
		③機械的応力	最大950
3電源電圧	DC24V	⑭保護構造	IP67
④駆動時電流	850mA		
⑤待機時電流	50mA	(1)コネクタ	電源用
⑥通信手段	無線規格:IEEE802.15.4←生産中 止		
⑦モータ種類	ステップモータ	⑥保持方式	セルフロ
⑧位置決め方 式	アブソリュート グレーコードホイールとホールセン サを使用	①内蔵メモリ	4096byt
9分解能	30 μ m (コードホイール)		
© /J /JT 115	5 μ m(ステップ角)	18稲妻耐性	要打合付

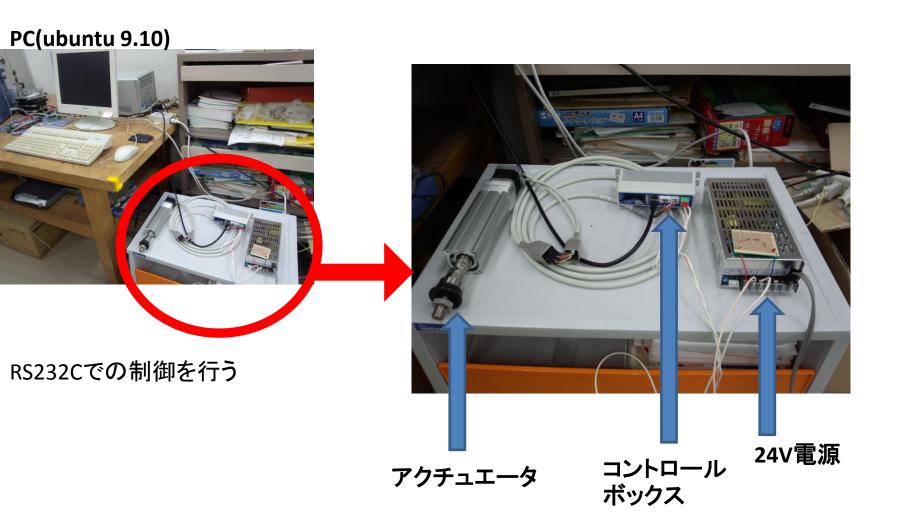
	T.
⑪メカ的スキマ	10μ m
⑪ストローク	36mm
⑫推力	最大330N
⑬機械的応力	最大9500N
14保護構造	IP67
⑤コネクタ	電源用にコネクタ1つ
⑥保持方式	セルフロック
⑪内蔵メモリ	4096bytes=2048角度変化→仰角
18稲妻耐性	要打合せ

SMC社製アクチュエータ

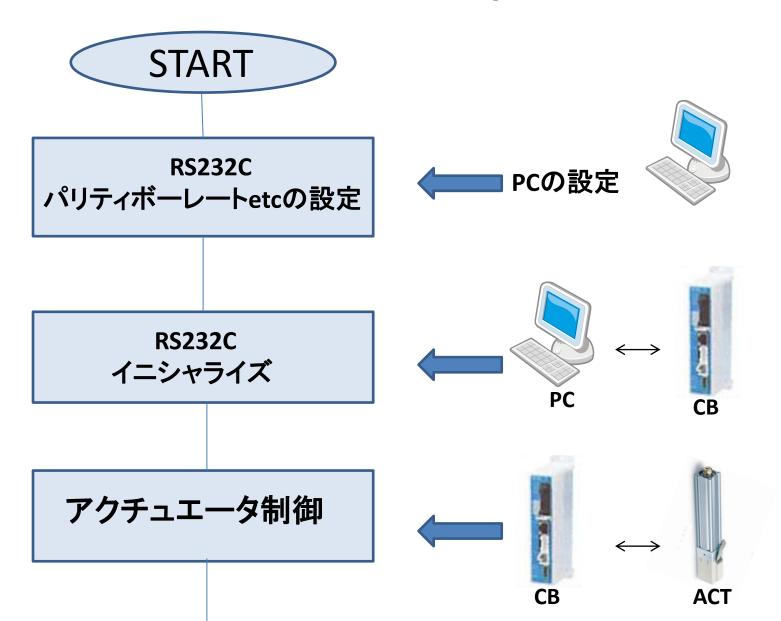
形状: 304×60.5×60.5 mm

本体質量: 2300 g

モータ種類:ステップモータ


分解能:800パルス/回転

ストローク:50mm


ストローク耐久性:3000 km

通信手段:有線

実験装置

プログラム制御方法

ライフテスト

No.LEY-SM00904

<u>電動アクチュエータ ロッドタイプ(LEYシリーズ)</u> ライフテスト

【共通条件】

供試品:各5台

・温度 : 25~35℃

・運転バターン:製品ストロークを往復運転

·加減速度:3,000mm/s2

【公称寿命】

・5,000km もしくは 3,000万回 のいずれか早い時期。

【測定・確認項目】

・繰返し位置決め精度:7回測定し、許容値(±0,02mm)を満足すること。 アラームが発生しないこと。

走行距離

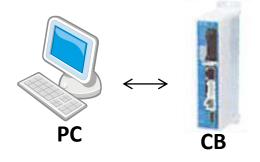
品番	取付 姿勢	負荷 (kg)	速度 (mm/s)	上段(黒矢印) 作動距離 : km /下段(白矢印) 往復回数 : 75回 (公學者面) 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 0 /600 /1,200 /1,800 /2,400 /3,000 /3,600 /4,200 /4,800 /5,400 /6,000	備者
LEY25B-25		1.9 (ロッド先跳)	250		全条件等面 を対象 (報題中)
LEY25B-100	水平	1.0 (ロッド先線)	250		全文科/研查 全可算 (製工業化(中)
LEY25B-400		0.5 (ロッド先端)	250		クタオル 連 の

まとめ

•要求仕様の確認とアクチュエータの選定

•SMC社製アクチュエータの購入

•シリアル通信によるアクチュエータ制御に成功


今後行う実験予定

- ・ 光軸ずれ量の画像処理を進める
- •鏡の重量に対するアクチュエータの耐久性を調べる

以下資料

シリアル通信にて、コントローラへ以下の操作を行う

- 1. 登録済みのステップデータの動作指示
- 2. ステップデータの編集
- 3. 位置、速度データの読み出し
- 4. 位置、速度、推力を直接指示及び動作

シリアル通信によって、以下のようなデータを送信し、内部リレーを操作する。

データ

ID	Function	Data	CRC Check
1byte	1byte	Nbyte	2byte